精英家教網 > 高中數學 > 題目詳情
函數f(x)=
2
sin(x+
π
4
)+2x2+x
2x2+cosx
的最大值為M,最小值為N,則( 。
A、M-N=4
B、M+N=4
C、M-N=2
D、M+N=2
考點:函數的最值及其幾何意義
專題:函數的性質及應用
分析:利用分式函數的性質進行分解,結合奇函數的對稱性即可得到結論.
解答: 解:f(x)=
2
sin(x+
π
4
)+2x2+x
2x2+cosx
=
sinx+cosx+2x2+x
2x2+cosx
=
sinx+x
2x2+cosx
+1,
設g(x)=
sinx+x
2x2+cosx
,則g(-x)=-g(x),即g(x)是奇函數,則gmax(x)+gmin(x)=0,
∴M=gmax(x)+1,N=gmin(x)+1,
∴M+N=gmax(x)+gmin(x)+2=2,
故選:D.
點評:本題主要考查函數最值的判斷,利用分式函數進行分解,利用奇函數的最值互為相反數,即可得到結論.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

圓O1和圓O2的極坐標方程分別為ρ=4cosθ,ρ=-4sinθ,則經過兩圓圓心的直線的直角坐標方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

矩陣A=
a-76
-2a
為不可逆矩陣,則a=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{an}滿足a1=
3
2
,an+1=an2-an+1(n∈N*),則m=
1
a1
+
1
a2
+…+
1
a2014
的整數部分是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1、F2是離心率為
2
的雙曲線C的左、右焦點,點P在C上,若|PF1|=2|PF2|,則cos∠F1PF2=(  )
A、
4
5
B、
3
4
C、
3
5
D、
1
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線與曲線y=
x-1
相切,且右焦點F為拋物線y2=20x的焦點,則雙曲線的標準方程為( 。
A、
x2
20
-
y2
5
=1
B、
x2
5
-
y2
20
=1
C、
x2
4
-y2
=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線C:
x2
4
-
y2
b2
=1(b>0)的一條漸進線方程為y=
6
2
x,F(xiàn)1,F(xiàn)2分別為雙曲線C的左右焦點,P為雙曲線C上的一點,滿足|PF1|:|PF2|=3:1,則|
PF1
+
PF2
|的值是( 。
A、4
B、2
6
C、2
10
D、
6
10
5

查看答案和解析>>

科目:高中數學 來源: 題型:

某款手機的廣告宣傳費用x(單位萬元)與利潤y(單位萬元)的統(tǒng)計數據如下表:
廣告宣傳費用x6578
利潤y34263842
根據上表可得線性回歸方程
y
=
b
x+
a
中的
?
b
為9.4,據此模型預報廣告宣傳費用為10萬元時利潤為( 。
A、65.0萬元
B、67.9萬元
C、68.1萬元
D、68.9萬元

查看答案和解析>>

科目:高中數學 來源: 題型:

請觀察以下三個式子:①1×3=
1×2×9
6
;②1×3+2×4=
2×3×11
6
;③1×3+2×4+3×5=
3×4×13
6

歸納出一般的結論,并用數學歸納法證明.

查看答案和解析>>

同步練習冊答案