A. | f(a+1)=f(2) | B. | f(a+1)>f(2) | C. | f(a+1)<f(2) | D. | 不確定 |
分析 由復(fù)合函數(shù)的單調(diào)性可知,0<a<1,從而確定函數(shù)f(x)=loga|x|(a>0且a≠1),在(0,+∞)上單調(diào)遞減,從而判斷大小關(guān)系.
解答 解:∵函數(shù)f(x)=loga|x|(a>0且a≠1),在(-∞,0)上單調(diào)遞增,
∴0<a<1,
f(x)=loga|x|是偶函數(shù),
∴函數(shù)f(x)=loga|x|(a>0且a≠1),在(0,+∞)上單調(diào)遞減,a+1<2.
∴f(a+1)>f(2);
故選:B.
點評 本題考查了對數(shù)函數(shù)單調(diào)性以及函數(shù)的奇偶性的判斷與應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | (1,3) | C. | (0,log23) | D. | (1,log23) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)F(x)是奇函數(shù),最小值是$-\sqrt{2}$ | B. | 函數(shù)F(x)是偶函數(shù),最小值是$-\sqrt{2}$ | ||
C. | 函數(shù)F(x)是奇函數(shù),最小值是-2 | D. | 函數(shù)F(x)是偶函數(shù),最小值是-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\sqrt{\frac{1}{x^2}}$ | B. | $y=\frac{{{{({x-1})}^0}}}{x}$ | C. | $\frac{x+1}{{x({x+1})}}$ | D. | $y=\frac{{{x^2}+1}}{{x({{x^2}+1})}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com