【題目】在圓上任取一點,過點作軸的垂線段,為垂足,當(dāng)點在圓上運(yùn)動時,點在線段上,且,點的軌跡為曲線.
(1)求曲線的方程;
(2)過拋物線:的焦點作直線交拋物線于,兩點,過且與直線垂直的直線交曲線于另一點,求面積的最小值,以及取得最小值時直線的方程.
【答案】(1),(2)9 ,
【解析】
(1)利用相關(guān)點法求軌跡方程,設(shè),則,代入圓的方程,整理,即可.
(2)法一:分類討論,當(dāng)直線的斜率不存在時,,,,當(dāng)直線的斜率存在時,則,設(shè)直線的方程為,與,聯(lián)立整理,計算,設(shè)直線的方程為,與,聯(lián)立整理,計算,根據(jù),令,則,,判斷單調(diào)性,確定時,面積最小,求解即可. 法二:設(shè)直線的方程設(shè)為,與聯(lián)立,計算,設(shè)直線的方程為與,聯(lián)立,計算,以下同法一.
(1)設(shè),,則由于,依題知:,.即,,
而點在圓上,故,
得,故曲線的方程為.
(2)法一:拋物線的焦點為,
當(dāng)直線的斜率不存在時,,,,
當(dāng)直線的斜率存在時,則,設(shè),,
直線的方程設(shè)為,代入,
消去得,即,
則,,
∴,
的直線方程為:,代入,
消去得,,
,
,,
,
面積:,
令,則,則,
,
令,則,即,當(dāng)時,為減函數(shù),當(dāng)時,為增函數(shù),所以時,面積最。
由得時,面積的最小值為,
此時直線的方程為:,即.
法二:拋物線的焦點為,
過點的直線的方程設(shè)為:,設(shè),,
聯(lián)立得.則,,
∴,
過且與直線垂直的直線設(shè)為:,
聯(lián)立得,,
,.
∴,
面積.
令,則,,
令,則,即,當(dāng)時,為減函數(shù),當(dāng)時,為增函數(shù),所以時,面積最。
由得時,面積的最小值為9,
此時直線的方程為:,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形為正方形,平面,四邊形與四邊形也都為正方形,連接,點為的中點,有下述四個結(jié)論:
①; 、與所成角為;
③平面; 、與平面所成角為.
其中所有正確結(jié)論的編號是( )
A.①②B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ax2+ax.
(1)若曲線y=f(x)在點P(1,f(1))處的切線與直線y=4x+1平行,求實數(shù)a的值;
(2)若時,關(guān)于x的方程在(0,2]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果一個四面體的三個面是直角三角形,下列三角形:(1)直角三角形;(2)銳角三角形;(3)鈍角三角形;(4)等腰三角形;(5)等腰直角三角形.那么可能成為這個四面體的第四個面是_____.(填上你認(rèn)為正確的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知四邊形是邊長為的正方形,點在底面上的射影為底面的中心點,點在棱上,且的面積為1.
(1)若點是的中點,求證:平面平面;
(2)在棱上是否存在一點使得二面角的余弦值為?若存在,求出點的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,證明:在上恒成立;
(2)若函數(shù)有唯一零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{2n﹣1}的前n項1,3,7,…,2n﹣1組成集合(n∈N*),從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為Tk(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn,例如當(dāng)n=1時,A1={1},T1=1,S1=1;當(dāng)n=2時,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,試寫出Sn=__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為F,短軸的兩個端點分別為A、B,且,為等邊三角形.
(1)求橢圓C的方程;
(2)如圖,點M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點O的對稱點為N;過點M作x軸的垂線,垂足為H,直線與橢圓C交于另一點J,若,試求以線段為直徑的圓的方程;
(3)已知是過點A的兩條互相垂直的直線,直線與圓相交于兩點,直線與橢圓C交于另一點R;求面積取最大值時,直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com