11.已知全集U=R,集合A={x|x-a≤0},B={x|x2-3x+2≤0},且A∪∁UB=R,則實數(shù)a的取值范圍是a≥2.

分析 由全集R及B,求出B的補集,根據(jù)A與B補集的并集為R,確定出a的范圍即可.

解答 解:∵全集U=R,B={x|x2-3x+2≤0}={x|1≤x≤2},
∴∁UB={x|x<1或x>2}.
∵A={x|x-a≤0}={x|x≤a},A∪(∁UB)=R,
∴a≥2,
則a的取值范圍為a≥2.
故答案為:a≥2.

點評 本題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知以點C(2,-1)為圓心的圓與直線l:mx+2y+2m+4=0相切,則當(dāng)圓C半徑最大時圓C的方程為( 。
A.x2+y2-4x+2y-12=0B.x2+y2-4x+2y-16=0
C.x2+y2-4x+2y-8=0D.x2+y2+4x-2y-10=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,一條準(zhǔn)線方程為x=2.過橢圓的上頂點A作一條與x軸、y軸都不垂直的直線交橢圓于另一點P,P關(guān)于x軸的對稱點為Q.
(1)求橢圓的方程;
(2)若直線AP,AQ與x軸交點的橫坐標(biāo)分別為m,n,求證:mn為常數(shù),并求出此常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,已知l1⊥l2,圓心在l1上,半徑為1m的圓O在t=0時與l2相切于點A,圓O沿l1以1m/s的速度勻速向上移動,圓被直線l2所截上方圓弧長記為x,令y=$si{n^2}\frac{x}{2}$,則y與時間t(0≤t≤1,單位:s)的函數(shù)y=f(t)的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)$f(x)=\frac{x}{(x-2)(x+a)}$是奇函數(shù),則a=(  )
A.-2B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2+2x|x-a|,其中a∈R.
(Ⅰ)當(dāng)a=-1時,在所給坐標(biāo)系中作出f(x)的圖象;
(Ⅱ)對任意x∈[1,2],函數(shù)f(x)的圖象恒在函數(shù)g(x)=-x+14圖象的下方,求實數(shù)a的取值范圍;
(Ⅲ)若關(guān)于x的方程f(x)+1=0在區(qū)間(-1,0)內(nèi)有兩個相異根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}-ax-7,(x≤1)\\ \frac{a}{x}(x>1)\end{array}\right.$是R上的增函數(shù),則a的取值范圍是( 。
A.-4≤a<0B.a≤-2C.-4≤a≤-2D.a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=x+2,那么不等式2f(x)-1<0的解集是$\left\{{\left.x\right|}\right.\left.{x<-\frac{3}{2}或0≤x<\frac{5}{2}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的定義域:
(1)y=$\frac{\sqrt{x-2}}{x+1}$•$\sqrt{x+5}$;      
(2)y=$\frac{\sqrt{x-3}}{|x|-5}$.

查看答案和解析>>

同步練習(xí)冊答案