已知|
a
|=2,|
b
|=1,向量
a
b
的夾角為60°
(1)計(jì)算
a
b

(2)|
a
-
b
|.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,向量的模
專(zhuān)題:平面向量及應(yīng)用
分析:(1)根據(jù)數(shù)量積的公式即可計(jì)算
a
b
;
(2)根據(jù)數(shù)列積的應(yīng)用即可求|
a
-
b
|的大。
解答: 解:(1)∵|
a
|=2,|
b
|=1,向量
a
b
的夾角為60°
a
b
=|
a
||
b
|cos60°=2×1×
1
2
=1.
(2)|
a
-
b
|2=|
a
|2+|
b
|2-2
a
b
=4+1-2=3,
則|
a
-
b
|=
3
點(diǎn)評(píng):本題主要考查平面向量數(shù)量積的應(yīng)用,根據(jù)數(shù)量積的公式是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=ax2+bx+c,不等式f(x)>0的解集是{x|x1<x<x2},f(0)>0,則( 。
A、f(x1+x2)>0
B、f(x1+x2)<0
C、f(x1+x2)=0
D、不能確定f(x1+x2)的符號(hào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax2-4x+4的圖象關(guān)于點(diǎn)(0,4)對(duì)稱(chēng).
(Ⅰ)求a的值;
(Ⅱ)求f(x)的極值;
(Ⅲ)求f(x)在區(qū)間[0,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實(shí)數(shù)a,對(duì)任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,a、b、c分別是角A、B、C的對(duì)邊,△ABC的周長(zhǎng)為
2
+2,且sinA+sinB=
2
sinC.
(1)求邊c的長(zhǎng).
(2)若△ABC的面積為
1
3
sinC,求角C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a>b>1,f(x)=
x
x-1
,比較f(a)與f(b)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和公式是Sn=n2-21n,
(1)求它的通項(xiàng)公式an
(2)求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從我校4名男生和3名女生中任選3人參加孝感市迎五四演講比賽.設(shè)隨機(jī)變量X表示所選3人中女生的人數(shù).
(1)求X的分布列;
(2)求“所選3人中女生人數(shù)X≤1”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知集合A={x|x2-x-6<0},B={x|x2+2x-8>0},求A∩B.
(2)當(dāng)k取什么值時(shí),一元二次不等式2kx2+kx-
3
8
<0對(duì)一切實(shí)數(shù)x都成立?

查看答案和解析>>

同步練習(xí)冊(cè)答案