【題目】已知函數(shù),函數(shù).
⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;
⑵當(dāng),求函數(shù)的最小值;
⑶是否存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出的值;若不存在,則說(shuō)明理由.
【答案】(1);(2);(3),
【解析】
(1)因?yàn)?/span>的定義域?yàn)?/span>,所以對(duì)任意實(shí)數(shù)恒成立.當(dāng)m=0時(shí)顯然不滿(mǎn)足,當(dāng)m不為0時(shí),內(nèi)層函數(shù)為二次函數(shù),需要開(kāi)口向上且判別式小于0,即可滿(mǎn)足要求.
(2)x∈[-1,1]時(shí),求函數(shù)是一個(gè)復(fù)合函數(shù),復(fù)合函數(shù)的最值一般分兩步來(lái)求,第一步求內(nèi)層函數(shù)的值域,第二步研究外層函數(shù)在內(nèi)層函數(shù)值域上的最值,本題內(nèi)層函數(shù)的值域是確定的一個(gè)集合,而外層函數(shù)是一個(gè)系數(shù)有變量的二次函數(shù),故本題是一個(gè)區(qū)間定軸動(dòng)的問(wèn)題.
(3) 根據(jù)函數(shù)的單調(diào)性,列出方程組 轉(zhuǎn)化為:即m、n是方程的兩非負(fù)實(shí)根,且m<n.即可得解.
(1)由題意對(duì)任意實(shí)數(shù)恒成立,
∵時(shí)顯然不滿(mǎn)足
∴
∴
(2)令,則
∴
(3)∵
∴ ∴
∴ 函數(shù)在[,]單調(diào)遞增,
∴ 又∵
∴ ,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解甲、乙兩個(gè)工廠(chǎng)生產(chǎn)的輪胎的寬度是否達(dá)標(biāo),分別從兩廠(chǎng)隨機(jī)各選取了個(gè)輪胎,將每個(gè)輪胎的寬度(單位: )記錄下來(lái)并繪制出如下的折線(xiàn)圖:
(1)分別計(jì)算甲、乙兩廠(chǎng)提供的個(gè)輪胎寬度的平均值;
(2)輪胎的寬度在內(nèi),則稱(chēng)這個(gè)輪胎是標(biāo)準(zhǔn)輪胎.
(i)若從甲乙提供的個(gè)輪胎中隨機(jī)選取個(gè),求所選的輪胎是標(biāo)準(zhǔn)輪胎的概率;
(ii)試比較甲、乙兩廠(chǎng)分別提供的個(gè)輪胎中所有標(biāo)準(zhǔn)輪胎寬度的方差大小,根據(jù)兩廠(chǎng)的標(biāo)準(zhǔn)輪胎寬度的平均水平及其波動(dòng)情況,判斷這兩個(gè)工廠(chǎng)哪個(gè)廠(chǎng)的輪胎相對(duì)更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)現(xiàn)有6名包含在內(nèi)的男志愿者和4名包含在內(nèi)的女志愿者,這10名志愿者要參加第十三屆全運(yùn)會(huì)支援服務(wù)工作,從這些人中隨機(jī)抽取5人參加田賽服務(wù)工作,另外5人參加徑賽服務(wù)工作.
(1)求參加田賽服務(wù)工作的志愿者中包含但不包含的概率;
(2)設(shè)表示參加徑賽服務(wù)工作的女志愿者人數(shù),求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,已知是邊長(zhǎng)為2的正方形, 為正三角形, 分別為的中點(diǎn), 且, .
(1)求證: 平面;
(2)求證: 平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(-2,0),B(2,0),曲線(xiàn)C上的動(dòng)點(diǎn)P滿(mǎn)足.
(1)求曲線(xiàn)C的方程;
(2)若過(guò)定點(diǎn)M(0,-2)的直線(xiàn)l與曲線(xiàn)C有公共點(diǎn),求直線(xiàn)l的斜率k的取值范圍;
(3)若動(dòng)點(diǎn)Q(x,y)在曲線(xiàn)C上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E為棱CC1的中點(diǎn),點(diǎn)M在正方形BCC1B1內(nèi)運(yùn)動(dòng),且直線(xiàn)AM//平面A1DE,則動(dòng)點(diǎn)M 的軌跡長(zhǎng)度為( )
A. B. π C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若, 是方程()的兩個(gè)不同的實(shí)數(shù)根,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四組函數(shù)中,表示同一函數(shù)的是
A.f(x)=,g(x)=x2–1B.f(x)=,g(x)=x+1
C.f(x)=,g(x)=()2D.f(x)=|x|,g(t)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線(xiàn)分別是函數(shù) 圖象上點(diǎn)處的切線(xiàn),垂直相交于點(diǎn),且分別與軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是( )
A. (1,+∞) B. (0,2) C. (0,+∞) D. (0,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com