已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓交于兩點(diǎn),若弦的中點(diǎn)為,求直線的方程.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)求此橢圓的方程,由題意到上頂點(diǎn)的距離為2,即,,再由,即可求出,從而得橢圓的方程;(Ⅱ)直線與橢圓交于兩點(diǎn),若弦的中點(diǎn)為,求直線的方程,可采用設(shè)而不求的方法,即設(shè),將代入橢圓方程,兩式作差即可得直線的斜率,再由點(diǎn)斜式寫出直線方程.
試題解析:(Ⅰ)由題意得所以
(Ⅱ)設(shè),
AB:,即
考點(diǎn):橢圓方程,直線與橢圓位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知坐標(biāo)平面內(nèi),.動(dòng)點(diǎn)P與外切與內(nèi)切.
(1)求動(dòng)圓心P的軌跡的方程;
(2)若過(guò)D點(diǎn)的斜率為2的直線與曲線交于兩點(diǎn)A、B,求AB的長(zhǎng);
(3)過(guò)D的動(dòng)直線與曲線交于A、B兩點(diǎn),線段中點(diǎn)為M,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點(diǎn)的雙曲線的弦所在的直線方程;
(2)過(guò)點(diǎn)(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點(diǎn),且Q1,Q2兩點(diǎn)的中點(diǎn)為(1,1)?如果存在,求出它的方程;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),過(guò)點(diǎn)的直線交拋物線于兩點(diǎn)。
(Ⅰ)試問(wèn)在軸上是否存在不同于點(diǎn)的一點(diǎn),使得軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)的坐標(biāo),若不存在說(shuō)明理由。
(Ⅱ)若的面積為,求向量的夾角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長(zhǎng)為4,且有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過(guò)定點(diǎn)M(2,0)且斜率不為0的直線交橢圓C于A、B兩點(diǎn),試問(wèn)在x軸上是否另存在一個(gè)定點(diǎn)P使得始終平分?若存在求出點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

)如圖,橢圓、、為橢圓的頂點(diǎn)

(Ⅰ)若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為,求橢圓方程;
(Ⅱ)已知:直線相交于,兩點(diǎn)(不是橢圓的左右頂點(diǎn)),并滿足 試研究:直線是否過(guò)定點(diǎn)? 若過(guò)定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓的方程;
(2)若為橢圓的動(dòng)點(diǎn),為過(guò)且垂直于軸的直線上的點(diǎn),為橢圓的離心率),求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于時(shí),求k的值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A(-5,0),B(5,0),動(dòng)點(diǎn)P滿足||,|,8成等差數(shù)列.
(1)求P點(diǎn)的軌跡方程;
(2)對(duì)于x軸上的點(diǎn)M,若滿足||·||=,則稱點(diǎn)M為點(diǎn)P對(duì)應(yīng)的“比例點(diǎn)”.問(wèn):對(duì)任意一個(gè)確定的點(diǎn)P,它總能對(duì)應(yīng)幾個(gè)“比例點(diǎn)”?

查看答案和解析>>

同步練習(xí)冊(cè)答案