【題目】已知向量.
(1)若分別表示將一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足的概率;
(2)若在連續(xù)區(qū)間上取值,求滿足的概率.
【答案】(1);(2).
【解析】
試題分析:(1)本題為古典概型問題.基本事件共個,滿足即的基本事件有,由此可得結(jié)論;(2)由題意知,本題為幾何概型問題,且概率為面積比.
試題解析:(1)將一枚質(zhì)地均勻的正方體骰子先后拋擲兩次,所包含的基本事件總數(shù)為個...............1分
由有
所以滿足的基本事件為,共3個..............3分
故滿足的概率為...............5分;
(2)若在連續(xù)區(qū)間上取值,則全部基本事件的結(jié)果為...............6分
滿足的基本事件的結(jié)果為..............8分
畫出圖形如圖,矩形面積為25
陰影部分面積為...............11分
故滿足的概率為...............12分.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標(biāo)依次是,(如圖所示,坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點到點所經(jīng)過的路程.
(1)若點為拋物線()準(zhǔn)線上一點,點均在該拋物線上,并且直線經(jīng)過該拋物線的焦點,證明.
(2)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫出(不需證明);
(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中且,.
(I)若,且時,的最小值是-2,求實數(shù)的值;
(II)若,且時,有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公司從某大學(xué)招收畢業(yè)生,經(jīng)過綜合測試,錄用了名男生和名女生,這名畢業(yè)生的測試成績?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績在分以上者到甲部門工作;分以下者到乙部門工作,另外只有成績高于分才能擔(dān)任助理工作。
(1)如果用分層抽樣的方法從甲部門人選和乙部門人選中選取人,再從這人中選人,那么至少有一人是甲部門人選的概率是多少?
(2)若從所有甲部門人選中隨機(jī)選人,用表示所選人員中能擔(dān)任助理工作的男生人數(shù),寫出的分布列,并求出的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù)
(1)比較的大小,并說明理由.(提示: )
(2)若,且對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓內(nèi)有一點為過點且傾斜角為的弦.
(1)當(dāng)時,求弦的長;
(2)當(dāng)弦被平分時,圓經(jīng)過點且與直線相切于點,求圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2009年推出一種新型家用轎車,購買時費用為萬元,每年應(yīng)交付保險費、養(yǎng)路費及汽油費共萬元,汽車的維修費為:第一年無維修費用,第二年為萬元,從第三年起,每年的維修費均比上一年增加萬元.(1)設(shè)該輛轎車使用年的總費用(包括購買費用、保險費、養(yǎng)路費、汽油費及維修費)為,求的表達(dá)式;(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費用最少)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com