已知f(x)=ax2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1,試求f(x)的表達式.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(0)=0,可得c=0,由f(x+1)=f(x)+x+1建立方程組可解a,b的值,進而求出f(x)的表達式.
解答: 解:∵f(x)=ax2+bx+c(a≠0),f(0)=0,
∴c=0.
又f(x+1)=f(x)+x+1,
∴a(x+1)2+b(x+1)+c=ax2+bx+c+x+1
即2ax+a+b=x+1,
2a=1
a+b=1

解得
a=
1
2
b=
1
2

∴f(x)=
1
2
x2+
1
2
x.
點評:本題為二次函數(shù)的解析式的求解,再根據(jù)函數(shù)的解析式求其單調(diào)區(qū)間,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某程序的框圖如圖所示.執(zhí)行該程序,若輸入的p為16,則輸出的n的值為(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)-2sin2x+1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,四個頂點所圍成菱形的面積為8
2

(Ⅰ)求橢圓的方程;
(Ⅱ)若A、B兩點在橢圓C上,坐標(biāo)原點為O,且滿足kOA•kOB=-
1
2
,
(i)求
.
OA
.
OB
的取值范圍;
(ii)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=2px(p>0)的焦點F以及橢圓C2
y2
a2
+
x2
b2
=1(a>b>0)的上、下焦點及左、右頂點均在圓O:x2+y2=1上.
(1)求拋物線C1和橢圓C2的標(biāo)準(zhǔn)方程;
(2)過點F的直線交拋物線C1于A,B兩不同點,交y軸于點N,已知
NA
=λ1
AF
,
NB
=λ2
BF
,則λ12是否為定值?若是,求出其值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2011年春,為保證全市居民用水,某市新建一個水庫,已知該市在雨季的10天中,時間x(單位:天,1≤x≤10,x∈N*)和水庫水位y(單位:米)的函數(shù)關(guān)系大致為y=-x2+12x+b,且在這10天中,水庫的最低水位為3米.
(1)求b的值.
(2)若這10天水庫沒有決堤,則水庫最低高多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足
a+c
b
=
sinA-sinB
sinA-sinC

(1)求角C;
(2)求sinA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是關(guān)于x的二次函數(shù),且f(-
3
2
+x)=f(-
3
2
-x),f(-
3
2
)=49,其函數(shù)圖象與x軸兩交點間的距離等于7,求二次函數(shù)y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在7天內(nèi)每天參加體育鍛煉的時間(單位:分鐘)用莖葉圖表示如圖,圖中左列表示時間的十位數(shù),右列表示時間的個位數(shù).則這7天該同學(xué)每天參加體育鍛煉時間(單位:分鐘)的平均數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案