已知圓柱OO′的母線l=4cm,全面積為42πcm2,則圓柱OO′的底面半徑r=
 
cm.
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
專題:空間位置關(guān)系與距離
分析:根據(jù)已知的圓柱OO′的母線l=4cm,全面積為42πcm2,根據(jù)圓柱的全面積公式,構(gòu)造關(guān)于半徑r的方程,解方程可得答案.
解答: 解:圓柱全面積S=2πr(r+l),
∵l=4cm,S=42πcm2
故2πr(r+4)=42π,
解得:r=3,或r=-7(舍),
故圓柱OO′的底面半徑r=3cm.
故答案為:3
點(diǎn)評:本題的關(guān)鍵是利用圓柱的表面積的計(jì)算公式列出方程求未知數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3x,并且f(a+2)=18,g(x)=3ax-4x(a∈R).
(1)求函數(shù)g(x)的解析式;
(2)求函數(shù)g(x)在[-1,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“⊕”,“?”是兩個運(yùn)算符號,且滿足如下運(yùn)算法則:對任意a,b∈R,有a⊕b=ab,a?b=
a-b
(a+b)2+1
,設(shè)全集U={c|c=(a⊕b)+(a?b),-2<a≤b<1且a,b∈Z},A={d|d=2(a⊕b)+a?b,-1<a<b<2且a,b∈Z},則∁UA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
滿足|
a
|=4,|
b
|=3,且(2
a
-3
b
)•(2
a
+
b
)=61,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列5個命題:
①函數(shù)f(x)=-sin(kπ+x)(k∈Z)是奇函數(shù);
②函數(shù)f(x)=tanx的圖象關(guān)于點(diǎn)(kπ+
π
2
,0)(k∈Z)對稱;
③函數(shù)f(x)=sin|x|是最小正周期為π的周期函數(shù);
④設(shè)θ是第二象限角,則tan
θ
2
>cot
θ
2
,且sin
θ
2
>cos
θ
2

⑤函數(shù)y=cos2x+sinx的最小值是-1.
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={m|m=6n,n∈N*,且m<60}中所有元素的和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=4cosxsin(x+
π
6
)-1,x∈[-
π
6
π
4
]時的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
是單位向量,
a
b
=0.若向量
c
滿足|
c
-2
a
-
b
|=1,則|
c
|2的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=(2a-1)x+1是R上的減函數(shù),則有( 。
A、a>
1
2
B、a<
1
2
C、a≥
1
2
D、a≤
1
2

查看答案和解析>>

同步練習(xí)冊答案