【題目】某中學(xué)舉行“新冠肺炎”防控知識(shí)閉卷考試比賽,總分獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的代表隊(duì)人數(shù)情況如表,其中一等獎(jiǎng)代表隊(duì)比三等獎(jiǎng)代表隊(duì)多10人.該校政教處為使頒獎(jiǎng)儀式有序進(jìn)行,氣氛活躍,在頒獎(jiǎng)過程中穿插抽獎(jiǎng)活動(dòng).并用分層抽樣的方法從三個(gè)代表隊(duì)中共抽取16人在前排就坐,其中二等獎(jiǎng)代表隊(duì)有5人(同隊(duì)內(nèi)男女生仍采用分層抽樣)
名次 性別 | 一等獎(jiǎng) 代表隊(duì) | 二等獎(jiǎng) 代表隊(duì) | 三等獎(jiǎng) 代表隊(duì) |
男生 | ? | 30 | ◎ |
女生 | 30 | 20 | 30 |
(1)從前排就坐的一等獎(jiǎng)代表隊(duì)中隨機(jī)抽取3人上臺(tái)領(lǐng)獎(jiǎng),用X表示女生上臺(tái)領(lǐng)獎(jiǎng)的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
(2)抽獎(jiǎng)活動(dòng)中,代表隊(duì)員通過操作按鍵,使電腦自動(dòng)產(chǎn)生[﹣2,2]內(nèi)的兩個(gè)均勻隨機(jī)數(shù)x,y,隨后電腦自動(dòng)運(yùn)行如圖所示的程序框圖的相應(yīng)程序.若電腦顯示“中獎(jiǎng)”,則代表隊(duì)員獲相應(yīng)獎(jiǎng)品;若電腦顯示“謝謝”,則不中獎(jiǎng).求代表隊(duì)隊(duì)員獲得獎(jiǎng)品的概率.
【答案】(1)分布列詳見解析,數(shù)學(xué)期望E(X);(2).
【解析】
(1)設(shè)代表隊(duì)共有n人,則,所以n=160,再設(shè)一等獎(jiǎng)代表隊(duì)男生人數(shù)為x,可根據(jù)表格中的數(shù)據(jù)列出關(guān)于x的方程,解之可得x=30,因此三個(gè)代表隊(duì)中前排就坐的比例是按照一等獎(jiǎng):二等獎(jiǎng):三等獎(jiǎng)=6:5:5,故前排就坐的16人中一等獎(jiǎng)代表隊(duì)共6人,有3男3女,所以X的可能取值為0,1,2,3,然后根據(jù)超幾何分布計(jì)算概率的方式逐一求出每個(gè)X的取值所對(duì)應(yīng)的概率即可得分布列,進(jìn)而求得數(shù)學(xué)期望;
(2)試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>Ω={(x,y)|﹣2≤x≤2,﹣2≤y≤2},事件A表示代表隊(duì)隊(duì)員獲得獎(jiǎng)品,所構(gòu)成的區(qū)域?yàn)?/span>,然后依次求出兩個(gè)區(qū)域的面積,根據(jù)幾何概型即可得解.
(1)設(shè)代表隊(duì)共有n人,則,所以n=160,
設(shè)一等獎(jiǎng)代表隊(duì)男生人數(shù)為x,則x+30+20+30+(x﹣10)+30=160,解得x=30,
所以一等獎(jiǎng)代表隊(duì)的男生人數(shù)為30,
所以三個(gè)代表隊(duì)中前排就坐的比例是按照一等獎(jiǎng):二等獎(jiǎng):三等獎(jiǎng)=60:50:50=6:5:5,
故前排就坐的16人中一等獎(jiǎng)代表隊(duì)有3男3女,共6人.
于是X的可能取值為0,1,2,3.
則P(X=0),P(X=1),P(X=2),P(X=3),
所以X的分布列為
X | 0 | 1 | 2 | 3 |
P |
|
∴數(shù)學(xué)期望E(X).
(2)試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>Ω={(x,y)|﹣2≤x≤2,﹣2≤y≤2},面積為SΩ=4×4=16,
事件A表示代表隊(duì)隊(duì)員獲得獎(jiǎng)品,所構(gòu)成的區(qū)域?yàn)?/span>,
如圖,陰影部分的面積為,
這是一個(gè)幾何概型,所以,即代表隊(duì)隊(duì)員獲得獎(jiǎng)品的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A、B分別是橢圓長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,.
(1)求點(diǎn)P的坐標(biāo);
(2)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于,求橢圓上的點(diǎn)到點(diǎn)M的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年年初,新冠肺炎疫情防控工作全面有序展開.某社區(qū)對(duì)居民疫情防控知識(shí)進(jìn)行了網(wǎng)上調(diào)研,調(diào)研成績?nèi)慷荚?/span>分到分之間.現(xiàn)從中隨機(jī)選取位居民的調(diào)研成績進(jìn)行統(tǒng)計(jì),繪制了如圖所示的頻率分布直方圖.
求的值,并估計(jì)這位居民調(diào)研成績的中位數(shù);
在成績?yōu)?/span>,的兩組居民中,用分層抽樣的方法抽取位居民,再從位居民中隨機(jī)抽取位進(jìn)行詳談.記為位居民的調(diào)研成績?cè)?/span>的人數(shù),求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;
(Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是的角平分線, 證明直線l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市收集并整理了該市2019年1月份至10月份各月最低氣溫與最高氣溫(單位:℃)的數(shù)據(jù),繪制了下面的折線圖.( )
已知該城市各月的最低氣溫與最高氣溫具有較好的線性關(guān)系,則根據(jù)折線圖,下列結(jié)論正確的是
A.最低氣溫與最高氣溫為正相關(guān)B.10月的最高氣溫不低于5月的最高氣溫
C.月溫差(最高氣溫減最低氣溫)的最大值出現(xiàn)在1月D.最低氣溫低于0 ℃的月份有4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點(diǎn).
(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有2008名學(xué)生參加大型公益活動(dòng).若有兩名學(xué)生互相認(rèn)識(shí),則將這兩名學(xué)生看作一個(gè)合作小組.
(1)求合作小組數(shù)目的最小值,使得無論學(xué)生認(rèn)識(shí)的情況如何,都存在三名學(xué)生,他們兩兩都在一個(gè)合作小組;
(2)若合作小組數(shù)目為,證明:存在四名學(xué)生、、、,使得和、和、和、和分別為一個(gè)合作小組.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O為坐標(biāo)原點(diǎn),橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,點(diǎn)I,J分別是橢圓C的右頂點(diǎn)、上頂點(diǎn),△IOJ的邊IJ上的中線長為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)H(-2,0)的直線交橢圓C于A,B兩點(diǎn),若AF1⊥BF1,求直線AB的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com