【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(為參數(shù))曲線C2的參數(shù)方程為(,為參數(shù))在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=與C1,C2各有一個交點.當=0時,這兩個交點間的距離為2,當=時,這兩個交點重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值;
(2)設當=時,l與C1,C2的交點分別為A1,B1,當=-時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種,
方案一:每滿200元減50元;
方案二:每滿200元可抽獎一次.具體規(guī)則是依次從裝有3個紅球、l個白球的甲箱,裝有2個紅球、2個白球的乙箱,以及裝有1個紅球、3個白球的丙箱中各隨機摸出1個球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個數(shù) | 3 | 2 | 1 | 0 |
實際付款 | 半價 | 7折 | 8折 | 原價 |
(1)若兩個顧客都選擇方案二,各抽獎一次,求至少一個人獲得半價優(yōu)惠的概率;
(2)若某顧客購物金額為320元,用所學概率知識比較哪一種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)設曲線和交于,兩點,點,若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟全球化、信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉(zhuǎn)向人才的競爭.吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標和緊迫任務.在此背景下,某信息網(wǎng)站在15個城市中對剛畢業(yè)的大學生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如圖所示.
(1)若某大學畢業(yè)生從這15座城市中隨機選擇一座城市就業(yè),求該生選中月平均收人薪資高于8000元的城市的概率;
(2)若從月平均收入薪資與月平均期望薪資之差高于1000元的城市中隨機選擇2座城市,求這2座城市的月平均期望薪資都高于8000元或都低于8000元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,四邊形為邊長等于的正方形,和均為正三角形,在三棱錐中:
(I)證明:平面平面;
(Ⅱ)若點在棱上運動,當直線與平面所成的角最大時,求二面角的余弦值.
圖一
圖二
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在菱形中,,,是的中點,以為折痕,將折起,使點到達點的位置,且平面平面,如圖2.
(1)求證:;
(2)若為的中點,求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在菱形中,,為線段的中點(如圖1).將沿折起到的位置,使得平面平面,為線段的中點(如圖2).
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)當四棱錐的體積為時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)設.
①若函數(shù)在處的切線過點,求的值;
②當時,若函數(shù)在上沒有零點,求的取值范圍;
(2)設函數(shù),且(),求證:當時, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com