分析 確定sin(α+$\frac{π}{3}$)=-$\frac{\sqrt{2}}{2}$,cos($α+\frac{π}{3}$)=$-\frac{\sqrt{2}}{2}$.sinα=sin[($α+\frac{π}{3}$)$-\frac{π}{3}$]利用公式展開(kāi)計(jì)算即可.
解答 解:∵sin(α+$\frac{π}{3}$)=-$\frac{\sqrt{2}}{2}$,若α∈(-$\frac{4π}{3}$,-$\frac{5π}{6}$),
∴-π≤$α+\frac{π}{3}$≤$-\frac{π}{2}$,
∵sin(α+$\frac{π}{3}$)=-$\frac{\sqrt{2}}{2}$,cos($α+\frac{π}{3}$)=$-\frac{\sqrt{2}}{2}$.
∴sinα=sin[($α+\frac{π}{3}$)$-\frac{π}{3}$]=($-\frac{\sqrt{2}}{2}$)[$-\frac{1}{2}$-$\frac{\sqrt{3}}{2}$]=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
∵α∈(-$\frac{4π}{3}$,-$\frac{5π}{6}$),
∴$α=-\frac{5π}{4}$
故答案為:$-\frac{5π}{4}$
點(diǎn)評(píng) 本題考察了函數(shù)的性質(zhì),單調(diào)性,三角函數(shù)的運(yùn)算公式,整體求解問(wèn)題,屬于計(jì)算題,準(zhǔn)確即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6$\sqrt{2}$ | B. | 6$\sqrt{3}$ | C. | 12$\sqrt{2}$ | D. | 12$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3,3) | B. | (3,2) | C. | (3,6) | D. | (3,7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f({log_2}^{\frac{1}{4}})>f({0.2^3})>f(\sqrt{3})$ | B. | $f({log_2}^{\frac{1}{4}})>f(\sqrt{3})>f({0.2^3})$ | ||
C. | $f(\sqrt{3})>f({0.2^3})>f({log_2}^{\frac{1}{4}})$ | D. | $f({0.2^3})>f(\sqrt{3})>f({log_2}^{\frac{1}{4}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com