分析 (1)利用兩角和的正弦函數(shù)公式化簡函數(shù)解析式可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,由2k$π-\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{π}{2}$,k∈Z,可解得f(x)的單調(diào)遞增區(qū)間.
(2)由f(x)≥2得sin(2x+$\frac{π}{4}$)$≥\frac{\sqrt{2}}{2}$,從而解得2kπ+$\frac{π}{4}$≤2x+$\frac{π}{4}$≤2kπ$+\frac{3π}{4}$,即可解得x的取值集合.
解答 (本小題滿分12分)
解:(1)f(x)=2cosx(sinx+cosx)
=2sinxcosx+2cos2x
=sin2x+1+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,…(3分)
由2k$π-\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{π}{2}$,k∈Z,可解得f(x)的單調(diào)遞增區(qū)間為:[kπ$-\frac{3π}{8}$,k$π+\frac{π}{8}$],k∈Z.…(6分)
(2)∵由f(x)≥2得sin(2x+$\frac{π}{4}$)$≥\frac{\sqrt{2}}{2}$,…(9分)
∴2kπ+$\frac{π}{4}$≤2x+$\frac{π}{4}$≤2kπ$+\frac{3π}{4}$,可得kπ≤x≤k$π+\frac{π}{4}$,…(11分)
∴x的取值集合為:[kπ,k$π+\frac{π}{4}$],k∈Z.…(12分)
點評 本題主要考查了兩角和的正弦函數(shù)公式,正弦函數(shù)的圖象和性質(zhì)的應用,考查了計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | ±2 | D. | ±4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b | B. | a<b | C. | a=b | D. | 均不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com