分析 設(shè)α=2x+$\frac{π}{6}$,由三角函數(shù)中的恒等變換應(yīng)用化簡可得sinα=-$\frac{1}{2}$,利用正弦函數(shù)的圖象和性質(zhì)即可得解.
解答 解:設(shè)α=2x+$\frac{π}{6}$
∵sin(4x+$\frac{π}{3}$)-4sin(2x-$\frac{5π}{6}$)+cos(2x+$\frac{π}{6}$)+2=0
⇒sin2(2x+$\frac{π}{6}$)-4sin(2x+$\frac{π}{6}$-π)+cos(2x+$\frac{π}{6}$)+2=0
⇒sin2α-4sin(α-π)+cosα+2=0
⇒sin2α+4sinα+cosα+2=0
⇒2sinαcosα+4sinα+cosα+2=0
⇒2sinα(cosα+2)+cosα+2=0
⇒(2sinα+1)(cosα+2)=0
⇒2sinα+1=0
⇒2sinα=-1
⇒sinα=-$\frac{1}{2}$
⇒α=$\frac{7π}{6}$+2kπ或$\frac{11π}{6}$+2kπ(k∈Z)
∴解集為:{α|α=$\frac{7π}{6}$+2kπ或$\frac{11π}{6}$+2kπ(k∈Z)}
故答案為:{α|α=$\frac{7π}{6}$+2kπ或$\frac{11π}{6}$+2kπ(k∈Z)}
點(diǎn)評 本題主要考查了三角函數(shù)恒等變化的應(yīng)用,考查了正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,屬于基本知識的考查.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北淶水波峰中學(xué)高一9月月考數(shù)學(xué)試卷(解析版) 題型:填空題
已知P={a,b},Q={-1,0,1},f是從P到Q的映射,則滿足f(a)=0的映射個(gè)數(shù)為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com