11.指數(shù)函數(shù)f(x)=ax(a>0,a≠1)的圖象經(jīng)過點(diǎn)(2,16),則實(shí)數(shù)a的值是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

分析 由題意代入點(diǎn)的坐標(biāo),即可求出a的值.

解答 解:指數(shù)函數(shù)f(x)=ax(a>0,a≠1)的圖象經(jīng)過點(diǎn)(2,16),
∴16=a2,
解得a=4,
故選:D.

點(diǎn)評 本題考查了指數(shù)函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x2+mx+m+1(m>5)的兩個(gè)零點(diǎn)分別為tanα,tanβ,且α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),則α+β的值為( 。
A.$\frac{π}{4}$B.-$\frac{π}{4}$C.$\frac{3}{4}π$D.-$\frac{3}{4}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)P($\frac{4}{3}$,$\frac{1}{3}$),橢圓C的方程為$\frac{{x}^{2}}{2}$+y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上點(diǎn)P到右焦點(diǎn)的距離的( 。
A.最大值為5,最小值為4B.最大值為10,最小值為8
C.最大值為10,最大值為6D.最大值為9,最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)z滿足$z=\frac{2+i}{i}+i$,則|z|=( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x+$\frac{m}{x}$,且此函數(shù)圖象過點(diǎn)(1,2).
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)判斷函數(shù)f(x)的奇偶性并證明;
(Ⅲ)討論函數(shù)f(x)在(0,1)上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow m=(2cosωx,-1),\overrightarrow n=(sinωx-cosωx,2)$(ω>0),函數(shù)f(x)=$\overrightarrow m•\overrightarrow n+3$,若函數(shù)f(x)的圖象的兩個(gè)相鄰對稱中心的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若將函數(shù)f(x)的圖象先向左平移$\frac{π}{4}$個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,得到函數(shù)g(x)的圖象,當(dāng)$x∈[\frac{π}{4},\frac{π}{2}]$時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.用min{a,b}表示a,b兩個(gè)數(shù)中的最小值,設(shè)f(x)=min{-x-2,x-4},則f(x)的最大值為( 。
A.-2B.-3C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若直線mx-2y-1=0經(jīng)過第一、三、四象限,則實(shí)數(shù)m的取值范圍是m>0.

查看答案和解析>>

同步練習(xí)冊答案