△ABC中,BC=2,角B=
π
3
,當(dāng)△ABC的面積等于
3
2
時,sinC=( 。
A、
3
2
B、
1
2
C、
3
3
D、
3
4
考點:三角形的面積公式
專題:計算題,解三角形
分析:先利用三角形面積公式求得AB,進(jìn)而利用余弦定理求得AC的值,最后利用正弦定理求得sinC.
解答: 解:∵△ABC中,BC=2,∠B=
π
3
,△ABC的面積
3
2
,
∴AB=1,
由余弦定理可知:AC=
AB2+BC2-2AB•BC•cosB
=
3
,
∴由正弦定理可知
AB
sinC
=
AC
sinB

∴sinC=
sinB
AC
•AB=
1
2

故選:B.
點評:本題主要考查了正弦定理和余弦定理的運用.在解三角形問題中,正弦定理和余弦定理是常用的方法,應(yīng)強化訓(xùn)練和記憶.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π)的圖象如圖所示,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足f(x)+xf′(x)>0,設(shè)a=
f(1)
2
,b=f(2),則a,b與0的大小關(guān)系為( 。
A、a>0>b
B、b<0<a
C、a>b>0
D、b>a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9件產(chǎn)品中,有4件一等品,3件二等品,2件三等品,現(xiàn)在要從中抽出4件產(chǎn)品來檢查,至少有兩件一等品的抽取方法是( 。
A、C
 
2
4
•C
 
2
5
B、C
 
2
4
+C
 
3
4
+C
 
4
4
C、C
 
2
4
+C
 
2
5
D、C
 
2
4
•C
 
2
5
+C
 
3
4
•C
 
1
5
+C
 
4
4
•C
 
0
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用回歸分析的方法研究兩個具有線性相關(guān)關(guān)系的變量時,下列說法中表述錯誤的是( 。
A、相關(guān)系數(shù)r滿足|r|≤1,而且|r|越接近1,變量間的相關(guān)程度越大,|r|越接近0,變量間的相關(guān)程度越小
B、可以用R2來刻畫回歸效果,對于已獲取的樣本數(shù)據(jù),R2越小,模型的擬合效果越好
C、如果殘差點比較均勻地落在含有x軸的水平的帶狀區(qū)域內(nèi),那么選用的模型比較合適;這樣的帶狀區(qū)域越窄,回歸方程的預(yù)報精度越高
D、不能期望回歸方程得到的預(yù)報值就是預(yù)報變量的精確值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N*)的個位數(shù),則a2014的值是( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以點(-1,4)為圓心,且與x軸相切的圓的方程是( 。
A、(x-1)2+(y+4)2=16
B、(x+1)2+(y-4)2=16
C、(x-1)2+(y+4)2=1
D、(x-1)2+(y-4)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先后拋擲兩枚均勻的正方體骰子,骰子朝上的面的點數(shù)分別為x,y.則x,y滿足方程2[log36(x+y)]2-log36(x+y)3+1=0的概率為( 。
A、
5
12
B、
1
6
C、
5
36
D、
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=
3
2
,an+1=an2-an+1.
(1)求證:
1
an
=
1
an-1
-
1
an+1-1

(2)設(shè)Sn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,n>2,證明:Sn<2.

查看答案和解析>>

同步練習(xí)冊答案