【題目】設(shè)直線的方程為.
(1)若在兩坐標(biāo)軸上的截距相等,求的方程;
(2)若不經(jīng)過第二象限,求實(shí)數(shù)的取值范圍;
(3)若與軸正半軸的交點(diǎn)為,與軸負(fù)半軸的交點(diǎn)為,求(為坐標(biāo)原點(diǎn))面積的最小值.
【答案】(1) 或;(2);(3)6.
【解析】
(1)根據(jù)直線過原點(diǎn)、直線與不過原點(diǎn)兩種情況進(jìn)行分類討論,由此求得直線的方程.
(2)將直線方程化為斜截式,再結(jié)合不經(jīng)過第二象限列不等式組,解不等式組求得實(shí)數(shù)的取值范圍.
(3)根據(jù)兩點(diǎn)的位置確定的坐標(biāo)以及的取值范圍,求得面積的表達(dá)式,結(jié)合的取值范圍,結(jié)合基本不等式,求得面積的最小值.
(1)若,解得,化為.
若,解得,可得直線的方程為:.
綜上所述,直線的方程為或.
(2),
∵不經(jīng)過第二象限,∴,解得.
∴實(shí)數(shù)的取值范圍是.
(3)令,解得,解得;
令,解得,解得或.
因此,解得.
∴
,
當(dāng)且僅當(dāng)時(shí)取等號.
∴(為坐標(biāo)原點(diǎn))面積的最小值是6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,,為中點(diǎn).
(1)證明:平面;
(2)若平面,是邊長為2的正三角形,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,若棱長為,點(diǎn)分別為線段、上的動(dòng)點(diǎn),則下列結(jié)論正確結(jié)論的是( )
A.面B.面面
C.點(diǎn)F到面的距離為定值D.直線與面所成角的正弦值為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓上一動(dòng)點(diǎn),過點(diǎn)作軸,垂足為點(diǎn),中點(diǎn)為.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)的直線與交于兩點(diǎn),當(dāng)時(shí),求線段的垂直平分線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知對任意,都有,且成立.令,其中為常數(shù).
(1)當(dāng)時(shí),求函數(shù)的所有零點(diǎn);
(2)當(dāng)時(shí),求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=奇函數(shù),且.
(1)求實(shí)數(shù)p ,q的值.
(2)判斷函數(shù)f(x)在上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在上的函數(shù)滿足如下條件:①函數(shù)的圖象關(guān)于軸對稱;②對于任意,;③當(dāng)時(shí),;④函數(shù),,若過點(diǎn)的直線與函數(shù)的圖象在上恰有8個(gè)交點(diǎn),則直線斜率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,離心率,短軸,拋物線頂點(diǎn)在原點(diǎn),以坐標(biāo)軸為對稱軸,焦點(diǎn)為,
(1)求橢圓和拋物線的方程;
(2)設(shè)坐標(biāo)原點(diǎn)為,為拋物線上第一象限內(nèi)的點(diǎn),為橢圓是一點(diǎn),且有,當(dāng)線段的中點(diǎn)在軸上時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如表:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總計(jì) | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總計(jì) | 80 | 320 | 400 |
求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
請說明是否有以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神
有關(guān)?參考公式:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com