分析 (Ⅰ)(i)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論b的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值點(diǎn),
(ii)得到函數(shù)g(x)有且僅有一個(gè)零點(diǎn)x=1,即方程2${{x}_{0}}^{3}$+x0-3=0的根為x0=1,從而求出b的值即可;
(Ⅱ)假設(shè)存在,根據(jù)題意得到${{x}_{1}}^{3}$+a${{x}_{1}}^{2}$+(b-1)x1+3=0.①,3${{x}_{1}}^{2}$+2ax1+b=0.②,得到a2-3b=-$\frac{9}{2}$,這與a2-3b>0相矛盾!判斷結(jié)論即可.
解答 解:(Ⅰ)f(x)的定義域?yàn)镽,且f′(x)=3x2+2ax+b.[(1分)]
當(dāng)a=0時(shí),f′(x)=3x2+b;
(。佼(dāng)b≥0時(shí),顯然f(x)在R上單調(diào)遞增,無(wú)極值點(diǎn).[(2分)]
②當(dāng)b<0時(shí),令f′(x)=0,解得:x=±$\sqrt{-\frac{3}}$.[(3分)]
f(x)和f′(x)的變化情況如下表:
x | (-∞,-$\sqrt{-\frac{3}}$) | -$\sqrt{-\frac{3}}$ | (-$\sqrt{-\frac{3}}$,$\sqrt{-\frac{3}}$) | $\sqrt{-\frac{3}}$ | ($\sqrt{-\frac{3}}$,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↗ | ↘ | ↗ |
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及新定義問(wèn)題,分類討論思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com