分析 (1)只需函數(shù)滿足:定義域關(guān)于原點(diǎn)對(duì)稱.$f(-x)=-x+\frac{1}{-x}=-(x+\frac{1}{x})=-f(x)$,即可;
(2)?x1、x2∈(1,+∞)且x1<x2,判定f(x1)-f(x2)的符號(hào)即可;
(3)根據(jù)函數(shù)的單調(diào)性求出最值即可.
解答 解:(1)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),定義域關(guān)于原點(diǎn)對(duì)稱.
又$f(-x)=-x+\frac{1}{-x}=-(x+\frac{1}{x})=-f(x)$,所以函數(shù)f(x)為奇函數(shù).----------------(3分)
(2)函數(shù)f(x)在(1,+∞)上單調(diào)遞增.
?x1、x2∈(1,+∞)且x1<x2,則$f({x_1})-f({x_2})={x_1}+\frac{1}{x_1}-({x_2}+\frac{1}{x_2})$=$({x_1}-{x_2})(\frac{{{x_1}{x_2}-1}}{{{x_1}{x_2}}})$,
∵1<x1<x2,∴x1-x2<0,x1x2>1,x1x2-1>0,∴f(x1)-f(x2)<0,
即∴f(x1)<f(x2)所以函數(shù)f(x)在(1,+∞)上單調(diào)遞增.----------------------(6分)
(3)由于f(x)為奇函數(shù),且f(x)在(1,+∞)上單調(diào)遞增,所以f(x)在[-5,-3]上單調(diào)遞增.
所以f(x)的最大值為$f(-3)=-3+\frac{1}{-3}=-\frac{10}{3}$,f(x)的最小值為$f(-5)=-5+\frac{1}{-5}=-\frac{26}{5}$---------------------------(9分)
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性、定義法證明單調(diào)性、最值,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最大值-2 | B. | 最小值-2 | C. | 最大值2$\sqrt{3}$ | D. | 最小值2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=cosx | B. | y=-x2 | C. | $y={(\frac{1}{2})^{|x|}}$ | D. | y=|sinx| |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com