【題目】已知函數(shù)f(x)=ex﹣mx,
(1)求函數(shù)f(x)的單調區(qū)間.
(2)若函數(shù)g(x)=f(x)﹣lnx+x2存在兩個零點,求m的取值范圍.

【答案】
(1)解:f′(x)=ex﹣m,

若m≤0,則f′(x)>0恒成立,

f(x)在R遞增,無遞減區(qū)間;

m>0時,由f′(x)=0,得:x=lnm,

令f′(x)>0,解得:x>lnm,

令f′(x)<0,解得:x<lnm,

故f(x)在(﹣∞,lnm)遞減,在(lnm,+∞)遞增


(2)解:由g(x)=f(x)﹣lnx+x2=0,

得m= ,

令h(x)=

則h′(x)= ,

觀察得x=1時,h′(x)=0.

當x>1時,h′(x)>0,

當0<x<1時,h′(x)<0,

∴h(x)min=h(1)=e+1,

∴函數(shù)g(x)=f(x)﹣lnx+x2存在兩個零點時,m的取值范圍是(e+1,+∞)


【解析】(1)求出函數(shù)的導數(shù),通過討論m的范圍,求出函數(shù)的單調區(qū)間即可;(2)由g(x)=f(x)﹣lnx+x2=0,分離出m,令h(x)= ,由此能求出函數(shù)g(x)=f(x)﹣lnx+x2存在兩個零點時m的取值范圍.
【考點精析】利用利用導數(shù)研究函數(shù)的單調性對題目進行判斷即可得到答案,需要熟知一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣
(1)討論f(x)的單調性.
(2)若f(x)在區(qū)間(1,2)上單調遞減,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,可以將函數(shù)y=sin2x的圖象(
A.向右平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向左平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O1和圓O2的極坐標方程分別為ρ=2,
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經過兩圓交點的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《最強大腦》是大型科學競技類真人秀節(jié)目,是專注傳播腦科學知識和腦力競技的節(jié)目.某機構為了了解大學生喜歡《最強大腦》是否與性別有關,對某校的100名大學生進行了問卷調查,得到如下列聯(lián)表:

喜歡《最強大腦》

不喜歡《最強大腦》

合計

男生

15

女生

15

合計

已知在這100人中隨機抽取1人抽到不喜歡《最強大腦》的大學生的概率為0.4

( I)請將上述列聯(lián)表補充完整;判斷是否有99.9%的把握認為喜歡《最強大腦》與性別有關,并說明理由;

( II)已知在被調查的大學生中有5名是大一學生,其中3名喜歡《最強大腦》,現(xiàn)從這5名大一學生中隨機抽取2人,抽到喜歡《最強大腦》的人數(shù)為X,求X的分布列及數(shù)學期望.

下面的臨界值表僅參考:

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2=,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)f(x)是定義在(﹣2,2)上的減函數(shù),則不等式f( )+f(2x﹣1)>0的解集是(
A.(﹣∞,
B.[﹣ ,+∞)
C.(﹣6,﹣
D.(﹣ ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點中,相鄰兩個交點之間的距離為 ,且圖象上一個最低點為 . (Ⅰ)求f(x)的解析式;
(Ⅱ)當 ,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1:kx+y=0和直線l2:kx+y+b=0(b>0),射線OC的一個法向量為 =(﹣k,1),點O為坐標原點,且k≥0,直線l1和l2之間的距離為2,點A、B分別是直線l1、l2上的動點,P(4,2),PM⊥l1于點M,PN⊥OC于點N;

(1)若k=1,求|OM|+|ON|的值;
(2)若| |=8,求 的最大值;
(3)若k=0,AB⊥l2 , 且Q(﹣4,﹣4),試求|PA|+|AB|+|BQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面幾種推理中是演繹推理的序號為(
A.由金、銀、銅、鐵可導電,猜想:金屬都可導電
B.猜想數(shù)列 {an}的通項公式為 (n∈N+
C.半徑為r圓的面積S=πr2 , 則單位圓的面積S=π
D.由平面直角坐標系中圓的方程為(x﹣a)2+(y﹣b)2=r2 , 推測空間直角坐標系中球的方程為(x﹣a)2+(y﹣b)2+(z﹣c)2=r2

查看答案和解析>>

同步練習冊答案