已知F為雙曲線C:-=1的左焦點(diǎn),P,Q為C上的點(diǎn).若PQ的長等于虛軸長的2倍,點(diǎn)A(5,0)在線段PQ上,則△ PQF的周長為________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知P是直線l:3x-4y+11=0上的動點(diǎn),PA,PB是圓x2+y2-2x-2y+1=0的兩條切線,C是圓心,那么四邊形PACB面積的最小值是 ( ).
A. B.2 C. D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)P(x0,y0),圓O:x2+y2=r2(r>0),直線l:x0x+y0y=r2,有以下幾個(gè)結(jié)論:①若點(diǎn)P在圓O上,則直線l與圓O相切;②若點(diǎn)P在圓O外,則直線l與圓O相離;③若點(diǎn)P在圓O內(nèi),則直線l與圓O相交;④無論點(diǎn)P在何處,直線l與圓O恒相切,其中正確的個(gè)數(shù)是( ).
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
一個(gè)橢圓中心在原點(diǎn),焦點(diǎn)F1,F2在x軸上,P(2,)是橢圓上一點(diǎn),且|PF1|,|F1F2|,|PF2|成等差數(shù)列,則橢圓方程為( ).
A.+=1 B.+=1 C.+=1 D.+=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓:+=1(0<b<2),左、右焦點(diǎn)分別為F1,F2,過F1的直線l交橢圓于A,B兩點(diǎn),若|BF2|+|AF2|的最大值為5,則b的值是( ).
A.1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
根據(jù)下列條件,求雙曲線的標(biāo)準(zhǔn)方程.
(1)虛軸長為12,離心率為;
(2)焦距為26,且經(jīng)過點(diǎn)M(0,12).
(3)經(jīng)過兩點(diǎn)P(-3,2)和Q(-6,-7).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F1,F2是雙曲線x2-=1的兩個(gè)焦點(diǎn),P是雙曲線上的一點(diǎn),且3|PF1|=4|PF2|,則△PF1F2的面積等于( ).
A.4 B.8 C.24 D.48
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:+=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-1,0),F2(1,0),且橢圓C經(jīng)過點(diǎn)P.
(1)求橢圓C的離心率;
(2)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且=+,求點(diǎn)Q的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com