【題目】如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達點的位置,且.
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析;(2)
【解析】
(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數(shù)據(jù)可證得為等邊三角形,又由于是的中點,所以,從而可證得結(jié)論;
(2)由于在中,,而平面平面,所以點在平面的投影恰好為的中點,所以如圖建立空間直角坐標(biāo)系,利用空間向量求解.
(1)由,所以平面四邊形為直角梯形,設(shè),因為.
所以在中,,則,又,所以,由,
所以為等邊三角形,
又是的中點,所以,又平面,
則有平面,
而平面,故平面平面.
(2)解法一:在中,,取中點,所以,
由(1)可知平面平面,平面平面,
所以平面,
以為坐標(biāo)原點,方向為軸方向,
建立如圖所示的空間直角坐標(biāo)系,
則,,
設(shè)平面的法向量,由得取,則
設(shè)直線與平面所成角大小為,
則,
故直線與平面所成角的正弦值為.
解法二:在中,,取中點,所以,由(1)可知平面平面,平面平面,
所以平面,
過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設(shè)到平面的距離為,由,即,即,
可得,
設(shè)直線與平面所成角大小為,則.
故直線與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國正逐漸進入老齡化社會,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫(yī)療機構(gòu)免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如下圖表:
據(jù)統(tǒng)計,該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā)放生活補貼,標(biāo)準(zhǔn)如下:
①80歲及以上長者每人每月發(fā)放生活補貼300元;
②80歲以下老人每人每月發(fā)放生活補貼200元;
③不能自理的老人每人每月額外發(fā)放生活補貼100元.
則政府執(zhí)行此計劃的年度預(yù)算為 ___________萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
(1)證明:當(dāng)時,;
(2)當(dāng)時,求整數(shù)的最大值.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,
(1)若甲、乙都以每分鐘100的速度從點出發(fā)在各自的大道上奔走,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后到達,甲到達,求此時甲、乙兩人之間的距離;
(2)甲、乙、丙所在位置分別記為點.設(shè),乙、丙之間的距離是甲、乙之間距離的2倍,且,請將甲、乙之間的距離表示為的函數(shù),并求甲、乙之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,,,記數(shù)列的前項和為,則對任意,則①數(shù)列單調(diào)遞增;②;③;④.上述四個結(jié)論中正確的是______.(填寫相應(yīng)的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:()的離心率為,且短軸的一個端點B與兩焦點A,C組成的三角形面積為.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若點P為橢圓E上的一點,過點P作橢圓E的切線交圓O:于不同的兩點M,N(其中M在N的右側(cè)),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,過左焦點的直線與橢圓交于,兩點,且線段的中點為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為上一個動點,過點與橢圓只有一個公共點的直線為,過點與垂直的直線為,求證:與的交點在定直線上,并求出該定直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com