2.圓C1:x2+y2=1與圓C2:(x-3)2+(y-4)2=9的位置關(guān)系是相離.

分析 求出兩個(gè)圓的圓心坐標(biāo)和半徑,求出圓心距,比較與半徑和的關(guān)系后,可得答案.

解答 解:圓C1:x2+y2=1的圓心坐標(biāo)為(0,0),半徑為1,
圓C2:(x-3)2+(y-4)2=9的圓心坐標(biāo)為(3,4),半徑為3,
故圓心距d=$\sqrt{{3}^{2}+{4}^{2}}$=5>1+3,
故兩圓相離,
故答案為:相離.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是兩圓之間的位置關(guān)系,熟練掌握兩圓位置關(guān)系的等價(jià)命題是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.氣象臺(tái)預(yù)報(bào)“本市明天降水概率是30%”,對(duì)此消息下列說(shuō)法正確的是( 。
A.本市明天將有30%的地區(qū)降水B.本市明天將有30%的時(shí)間降水
C.本市明天有可能降水D.本市明天肯定不降水

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.實(shí)數(shù)x,y滿足圓的標(biāo)準(zhǔn)方程(x+1)2+(y-2)2=4
(Ⅰ)求$\frac{y}{x-4}$的最小值;
(Ⅱ)求定點(diǎn)(1,0)到圓上點(diǎn)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$(a>0,a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使xf(x)>0在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.用定義證明函數(shù)f(x)=3x-1在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知平面直角坐標(biāo)系xOy中,A(6,2$\sqrt{3}$),B(4,4),圓C是△OAB的外接圓.
(1)求圓C的一般方程;
(2)若過(guò)點(diǎn)P(0,4$\sqrt{3}$)的直線l與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=f(x)的定義域是[0,2],則函數(shù)y=$\frac{f(2x)}{\sqrt{1-x}}$+lgx的定義域是( 。
A.[0,1]B.[0,1)C.[0,1)∪(1,4]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知:集合A={x|3<x≤6),B={x|m≤x≤2m+l}
(1)若m=2,求A∩B,A∪B;
(2)若A⊆B,求實(shí)數(shù)m的取值范圍;
(3)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知0<k<4,直線l1:kx-2y-2k+8=0和直線${l_2}:2x+{k^2}y-4{k^2}-4=0$與兩坐標(biāo)軸圍成一個(gè)四邊形,求使這個(gè)四邊形面積取最小時(shí)的k的值及最小面積的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案