【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側(cè)作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______

【答案】4

【解析】

以A為坐標原點,AC所在直線為x軸,建立如圖所示的直角坐標系,求得A,B,C的坐標,可得以AB為直徑的半圓方程,以AC為直徑的半圓方程,設(shè)出M,N的坐標,

由向量數(shù)量積的坐標表示,結(jié)合三角函數(shù)的恒等變換可得,再由余弦函數(shù)、二次函數(shù)的圖象和性質(zhì),計算可得最大值.

以A為坐標原點,AC所在直線為x軸,建立如圖所示的直角坐標系,

可得,,

以AB為直徑的半圓方程為,

以AC為直徑的半圓方程為,

設(shè),,,

,可得,

即有,

即為,

即有,

,,可得,即,

,

可得,即,時,的最大值為4.

故答案為:4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù))

判斷函數(shù)極值點的個數(shù),并說明理由;

,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于AB兩點,已知AB的橫坐標分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知、分別為雙曲線的左右焦點,左右頂點為、,是雙曲線上任意一點,則分別以線段、為直徑的兩圓的位置關(guān)系為( )

A. 相交B. 相切C. 相離D. 以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)在圓內(nèi)直徑所對的圓周角是直角.此定理在橢圓內(nèi)(以焦點在軸上的標準形式為例)可表述為“過橢圓的中心的直線交橢圓于兩點,點是橢圓上異于的任意一點,當直線,斜率存在時,它們之積為定值.”試求此定值;

(2)在圓內(nèi)垂直于弦的直徑平分弦.類比(1)將此定理推廣至橢圓,不要求證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若處與直線相切,求的值;

2)在(1)的條件下,求上的最大值;

3)若不等式對所有的都成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點,點P是橢圓上任意一點,則點P到直線AB的距離最大值為( )

A. B. C. 6D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1,EBC的中點.

1)求證:AEB1C;

2)求異面直線AEA1C所成的角的大;

3)若GC1C中點,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大以來,國家深入推進精準脫貧,加大資金投入,強化社會幫扶,為了更好的服務于人民,派調(diào)查組到某農(nóng)村去考察和指導工作.該地區(qū)有200戶農(nóng)民,且都從事水果種植,據(jù)了解,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),調(diào)查組和當?shù)卣疀Q定動員部分農(nóng)民從事水果加工,據(jù)估計,若能動員戶農(nóng)民從事水果加工,則剩下的繼續(xù)從事水果種植的農(nóng)民平均每戶的年收入有望提高,而從事水果加工的農(nóng)民平均每戶收入將為萬元.

1)若動員戶農(nóng)民從事水果加工后,要使從事水果種植的農(nóng)民的總年收入不低于動員前從事水果種植的農(nóng)民的總年收入,求的取值范圍;

2)在(1)的條件下,要使這200戶農(nóng)民中從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入,求的最大值.

查看答案和解析>>

同步練習冊答案