【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側(cè)作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù))
判斷函數(shù)極值點的個數(shù),并說明理由;
若, ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為
(1)求的值; (2)求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知、分別為雙曲線的左右焦點,左右頂點為、,是雙曲線上任意一點,則分別以線段、為直徑的兩圓的位置關(guān)系為( )
A. 相交B. 相切C. 相離D. 以上情況均有可能
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)在圓內(nèi)直徑所對的圓周角是直角.此定理在橢圓內(nèi)(以焦點在軸上的標準形式為例)可表述為“過橢圓的中心的直線交橢圓于兩點,點是橢圓上異于的任意一點,當直線,斜率存在時,它們之積為定值.”試求此定值;
(2)在圓內(nèi)垂直于弦的直徑平分弦.類比(1)將此定理推廣至橢圓,不要求證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若在處與直線相切,求的值;
(2)在(1)的條件下,求在上的最大值;
(3)若不等式對所有的都成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點.
(1)求證:AE⊥B1C;
(2)求異面直線AE與A1C所成的角的大;
(3)若G為C1C中點,求二面角C-AG-E的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大以來,國家深入推進精準脫貧,加大資金投入,強化社會幫扶,為了更好的服務于人民,派調(diào)查組到某農(nóng)村去考察和指導工作.該地區(qū)有200戶農(nóng)民,且都從事水果種植,據(jù)了解,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),調(diào)查組和當?shù)卣疀Q定動員部分農(nóng)民從事水果加工,據(jù)估計,若能動員戶農(nóng)民從事水果加工,則剩下的繼續(xù)從事水果種植的農(nóng)民平均每戶的年收入有望提高,而從事水果加工的農(nóng)民平均每戶收入將為萬元.
(1)若動員戶農(nóng)民從事水果加工后,要使從事水果種植的農(nóng)民的總年收入不低于動員前從事水果種植的農(nóng)民的總年收入,求的取值范圍;
(2)在(1)的條件下,要使這200戶農(nóng)民中從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com