在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=cos2α
y=1+2cosα.
為參數(shù)),點(diǎn)M的坐標(biāo)為(-1,1);若以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,
(Ⅰ)請(qǐng)將點(diǎn)M的直角坐標(biāo)化為極坐標(biāo)(限定ρ≥0,-π<θ≤π);
(Ⅱ)若點(diǎn)N是曲線C上的任一點(diǎn),求線段MN的長度的最大值和最小值.
分析:(Ⅰ)先求出ρ=
(-1)2+12
=
2
,根據(jù)點(diǎn)M在第二象限內(nèi),且tanθ=
1
-1
=-1
,求出θ=
4
,即可得到點(diǎn)M的極坐標(biāo).
(Ⅱ)根據(jù)兩點(diǎn)間的距離公式并化簡(jiǎn)可得求出|MN|=
(cos2α+3)2-8
,故當(dāng)cosα=0時(shí),|MN|取最小值1;
當(dāng)cosα=±1時(shí),|MN|取最大值2
2
解答:解:(Ⅰ)ρ=
(-1)2+12
=
2
,又點(diǎn)M在第二象限內(nèi),且tanθ=
1
-1
=-1
,∴θ=
4

即點(diǎn)M的極坐標(biāo)(
2
,
4
)

(Ⅱ)|MN|=
(x+1)2+(y-1)2
=
(cos2α+1)2+(1+2cosα-1)2
=
cos4α+6cos2α+1
=
(cos2α+3)2-8

故當(dāng)cosα=0時(shí),|MN|取最小值1;當(dāng)cosα=±1時(shí),|MN|取最大值2
2
點(diǎn)評(píng):本題考查把直角坐標(biāo)方程化為極坐標(biāo)方程的方法,兩點(diǎn)間的距離公式的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點(diǎn),若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2)和點(diǎn)Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動(dòng)點(diǎn)P在射線OA上運(yùn)動(dòng),動(dòng)點(diǎn)Q在y軸的正半軸上運(yùn)動(dòng),△POQ的面積為2
3

(1)求線段PQ中點(diǎn)M的軌跡C的方程;
(2)R1,R2是曲線C上的動(dòng)點(diǎn),R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個(gè)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個(gè)焦分別為F1,F(xiàn)2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l 的對(duì)稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案