在平面直角坐標(biāo)系xOy中,不等式組
-1≤x≤2
0≤y≤2
表示的平面區(qū)域?yàn)閃,從區(qū)域W中隨機(jī)點(diǎn)M(x,y).
(1)若x∈R,y∈R,求OM≥1得概率;
(2)若x∈Z,y∈Z,求點(diǎn)M位于第二象限的概率.
考點(diǎn):幾何概型
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)這是一個(gè)幾何概率模型.算出圖中以(0,0)圓心1為半徑的圓的面積,再除以平面區(qū)域矩形面積,即可求出概率.
(2)確定平面區(qū)域整數(shù)點(diǎn)坐標(biāo)個(gè)數(shù),再找出第二象限中的點(diǎn)個(gè)數(shù).二者做除法即可算出概率.
解答: 解:(1)這是一個(gè)幾何概率模型.OM=1時(shí),半圓的面積為
1
2
π

若x,y∈R,則區(qū)域W的面積是3×2=6.
∴滿足OM≥1的點(diǎn)M構(gòu)成的區(qū)域的面積為6-
1
2
π
,
∴OM≥1的概率為
6-
1
2
π
6
=1-
π
12

(2)若x,y∈Z,則點(diǎn)M的個(gè)數(shù)共有12個(gè),列舉如下:
(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).
當(dāng)點(diǎn)M的坐標(biāo)為(-1,1),(-1,2)時(shí),點(diǎn)M位于第二象限,
故點(diǎn)M位于第二象限的概率為
2
12
=
1
6
點(diǎn)評(píng):概率模型包括古典概型與幾何概型,區(qū)分的方法在于基本事件的有限與無(wú)限.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

α為平面,m,n是兩條不同直線,則m∥n的一個(gè)充分條件是( 。
A、m∥α且n∥α
B、m,n與平面α所成的角相等
C、m⊥α且n⊥α
D、m,n與平面α的距離相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程cos2x+4sinx-a=0有解,那么a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,a,b,c分別是內(nèi)角A,B,C所對(duì)的邊,已知2asinC=
3
c.
(Ⅰ)求角A的大;
(Ⅱ)若b+c=4,△ABC的面積等于
3
,求a,b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,且∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,點(diǎn)P、M、N分別為BC1、CC1、AB1的中點(diǎn).
(1)求證:PN∥平面ABC;
(2)求證:AB1⊥A1M;
(3)求二面角C1-AB1-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
2
2x+1
(a∈R)為奇函數(shù).
(1)求函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)滿足f(k-2)+f(2x+1+4x)>0對(duì)于任意x∈R恒成立,求實(shí)數(shù)K的取值范圍;
(3)證明xf(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x|x-a|-lnx,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{xn}滿足xn+
1
xn+1
<2(n∈N*).
(1)證明:xn+
1
xn
≥2;
(2)證明:xn<xn+1;
(3)證明:
n-1
n
<xn
n+1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,f(x)=
a•2x+a-2
2x+1
(x∈R)是奇函數(shù),
(1)求a的值;
(2)解不等式f(1-5x)+f(6x2)>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案