14.不等式22x-1<2的解集是(  )
A.{x|x<0}B.{x|x>1}C.{x|x<2}D.{x|x<1}

分析 根據(jù)指數(shù)函數(shù)的單調性,把不等式22x-1<2化為2x-1<1,求出解集即可.

解答 解:不等式22x-1<2可化為2x-1<1,
解得x<1,
所以不等式22x-1<2的解集是{x|x<1}.
故選:D.

點評 本題考查了利用指數(shù)函數(shù)的單調性求不等式解集的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓的方程為$\frac{{x}^{2}}{9}$+y2=1,過左焦點作傾斜角為$\frac{π}{6}$的直線交橢圓于A,B兩點.
(1)求弦AB的長.
(2)求左焦點F1到AB中點M的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設F1,F(xiàn)2分別為橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左右焦點,點P(x,y)在直線y-x-3=0上(x≠-3且$x≠±\sqrt{3}$),直線PF1,PF2的斜率分別為k1、k2,則$\frac{1}{k_2}-\frac{2}{k_1}$的值為( 。
A.1B.$\frac{3}{2}$C.$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=lnx-$\frac{1}{2}a{x^2}$-bx.
(1)當a=-2,b=3時,求函數(shù)f(x)的極值;
(2)令F(x)=f(x)+$\frac{1}{2}a{x^2}+bx+\frac{a}{x}({0<x≤3})$,其圖象上任意一點P(x0,y0)處切線的斜率k≤$\frac{1}{2}$恒成立,求實數(shù)a的取值范圍;
(3)當a=0,b=-1時,方程f(x)=mx在區(qū)間[1,e2]內恰有兩個實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知橢圓$\frac{x^2}{5}$+$\frac{y^2}{m}$=1的離心率e=$\frac{{\sqrt{10}}}{5}$,則m的值為( 。
A.3B.$\frac{25}{3}$或 3C.$\sqrt{5}$D.$\frac{{5\sqrt{15}}}{3}$或$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)中,滿足“f(x)在x∈(0,+∞)為增”的是( 。
A.f(x)=x2+4x+3B.f(x)=-3x+1C.f(x)=$\frac{2}{x}$D.f(x)=x2-4x+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別為A1B1,BB1,B1C1的中點,則AC1
與D1E所成角的余弦值為$\frac{\sqrt{15}}{30}$,AC1與平面EFG所成角的正弦值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)$y=\sqrt{1-{2^x}}$的定義域是( 。
A.(-∞,0]B.[0,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列函數(shù)中,在R上單調遞增的是(  )
A.y=-xB.y=log3xC.$y={x^{\frac{1}{3}}}$D.y=($\frac{1}{2}$)x

查看答案和解析>>

同步練習冊答案