考點:對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由
f(x1)+f(x2)=得
+=,代入x
1+x
2=1化簡可得
4x1+4x2=2-m或2-m=0;從而解m;
(2)由(1)知f(x)在(-∞,+∞)上為減函數(shù),故不等式
f(log2(x-1)-1)>f(log(x-1)-)可化為
| log2(x-1)-1<log(x-1)- | x-1>0 |
| |
,從而解得.
解答:
解:(1)由
f(x1)+f(x2)=得,
+=,
∴
4x1+4x2+2m=[4x1+x2+m(4x1+4x2)+m2],
∵x
1+x
2=1,
∴
(2-m)(4x1+4x2)=(m-2)2,
∴
4x1+4x2=2-m或2-m=0;
∵
4x1+4x2≥2=2=4,
而m>0時2-m<2,
∴
4x1+4x2≠2-m,
∴m=2.
(2)由(1)知f(x)在(-∞,+∞)上為減函數(shù),
由
f(log2(x-1)-1)>f(log(x-1)-)得,
| log2(x-1)-1<log(x-1)- | x-1>0 |
| |
,
∴
1<x<1+,
∴不等式的解集為
{x|1<x<1+}.
點評:本題考查了函數(shù)的性質(zhì)的判斷與應(yīng)用,屬于中檔題.