11.在極坐標(biāo)系中,求圓ρ=4sinθ的圓心到直線θ=$\frac{π}{4}$(ρ∈R)的距離.

分析 求出圓的標(biāo)準(zhǔn)方程,得到圓心,直線的普通方程,利用點(diǎn)到直線的距離公式求解即可.

解答 (10分)解:圓ρ=4sinθ的普通方程為x2+(y-2)2=4,圓心為(0,2);
直線θ=$\frac{π}{4}$(ρ∈R)的普通方程為y=x,
圓心到直線的距離$d=\frac{2}{\sqrt{2}}=\sqrt{2}$.

點(diǎn)評(píng) 本題考查圓的極坐標(biāo)方程與互化,點(diǎn)到直線的距離公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若函數(shù)y=f(x)圖象上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,然后向左平移1個(gè)單位長度.得到y(tǒng)=$\frac{1}{2}$sin2x的圖象,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{ax-1}{x+1}$.
(1)若a=-2,試證f(x)在(-∞,-2)上單調(diào)遞減;
(2)函數(shù)f(x)在(-∞,-1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.P為橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上的右頂點(diǎn),A,B為橢圓上關(guān)于原點(diǎn)對稱兩點(diǎn)且PA,PB斜率存在,直線PA,PB分別與直線x=3交于M,N兩點(diǎn).
(1)求MN的最小值;
(2)證明以MN為直徑的圓過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C的方程;$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),F(xiàn)(1,0)是它的一個(gè)焦點(diǎn).
(1)當(dāng)a=$\sqrt{2}$時(shí),圓O;x2+y2=1的切線與橢圓C交于P,Q兩點(diǎn),且滿足$\frac{2}{3}≤\overrightarrow{OP}•\overrightarrow{OQ}≤\frac{3}{4}$,求△POQ面積的最小值;
(2)設(shè)過橢圓C的右焦點(diǎn)F的直線L交橢圓于A,B兩點(diǎn),若直線l繞點(diǎn)F任意轉(zhuǎn)動(dòng),都有|$\overrightarrow{OA}$|2+|$\overrightarrow{OB}$|2<|$\overrightarrow{AB}$|2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\frac{{a}^{2x}-(t-1)}{{a}^{x}}$(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0對一切x∈R恒成立的實(shí)數(shù)k的取值范圍;
(3)若函數(shù)f(x)的圖象過點(diǎn)(1,$\frac{3}{2}$),是否存在正數(shù)m,且m≠1使函數(shù)g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值為0,若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=ln$\frac{ex}{e-x},若f(\frac{e}{2013})+f(\frac{2e}{2013})+…+f(\frac{2012e}{2013})=503(a+b),則{a^2}+{b^2}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若函數(shù)y=a-bsinx的最大值為$\frac{3}{2}$,最小值為$-\frac{1}{2}$,
(1)求a,b的值;
(2)求函數(shù)y=-asinx取得最大值時(shí)的x的值;
(3)請寫出函數(shù)y=-asinx的對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)在x=1處可導(dǎo),則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{2△x}$等于$\frac{1}{2}$f′(1).

查看答案和解析>>

同步練習(xí)冊答案