函數(shù)f(x)=sin(ωx+?)(x∈R,ω>0,0≤?<2π)的部分圖象如圖,則


  1. A.
    ω=數(shù)學(xué)公式,?=數(shù)學(xué)公式
  2. B.
    ω=數(shù)學(xué)公式,?=數(shù)學(xué)公式
  3. C.
    ω=數(shù)學(xué)公式,?=數(shù)學(xué)公式
  4. D.
    ω=數(shù)學(xué)公式,?=數(shù)學(xué)公式
B
分析:利用函數(shù)的圖象直接求出函數(shù)的周期,推出ω,利用函數(shù)的圖象經(jīng)過(1,1)求出?.
解答:由題意可知,函數(shù)的周期為T=4×(3-1)=8,T=,ω=;
函數(shù)的圖象經(jīng)過(1,1),
所以1=sin(+?)(0≤?<2π),所以?=
故選B.
點評:本題考查函數(shù)的解析式的求法,考查學(xué)生的視圖用圖能力,計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知角a的頂點在原點,始邊與x軸的正半軸重合,終邊經(jīng)過點P(-3,
3
).
(1)定義行列式
.
ab
cd
.
=a•d-b•c,解關(guān)于x的方程:
.
cosxsinx
sinacosa
.
+1=0;
(2)若函數(shù)f(x)=sin(x+a)+cos(x+a)(x∈R)的圖象關(guān)于直線x=x0對稱,求tanx0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的圖象過點(
π8
,-1).
(1)求φ;  
(2)求函數(shù)y=f(x)的周期和單調(diào)增區(qū)間;
(3)在給定的坐標(biāo)系上畫出函數(shù)y=f(x)在區(qū)間,[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+?)(x∈R,ω>0,0≤?<2π)的部分圖象如圖,則
(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(wx+
π
2
)(w>0),其圖象上相鄰的兩個最低點間的距離為2π.
(1)求ω的值及f(x)
(2)若a∈(-
π
3
,
π
2
),f(a+
π
3
)=
1
3
,求sin(2a+
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•紅橋區(qū)一模)函數(shù)f(x)=sin(2ωx+
π
6
)+1(x∈R)圖象的兩相鄰對稱軸間的距離為1,則正數(shù)ω的值等于(  )

查看答案和解析>>

同步練習(xí)冊答案