【題目】已知函數(shù),其定義域為 (),設(shè).
(Ⅰ)試確定 的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(Ⅱ)試判斷的大小并說明理由.
【答案】(Ⅰ) ;(Ⅱ) ,理由見解析.
【解析】試題分析:(1)由f(x)=(x2﹣3x+3)ex,知f′(x)=(x2﹣x)ex,令f′(x)≥0,則x≥1或x≤0,由此能夠確定t的取值范圍,使得函數(shù)f(x)在[﹣2,t]上為單調(diào)函數(shù).
(2)根據(jù)﹣2<t≤0,0<t≤1,t>1,進(jìn)行分類討論,由此能夠判斷m,n的大小并說明理由.
試題解析:
(Ⅰ) ,令,則或,
在上單調(diào)遞增,在上單調(diào)遞減,
(Ⅱ)①若,則在上單調(diào)遞增,,即.
②若,則在上單調(diào)遞增,在上單調(diào)遞減
又,,即.
③若,則在上單調(diào)遞增,在上單調(diào)遞減
,即,綜上,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖F1、F2是橢圓C1:+y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的年固定成本為150萬元,每生產(chǎn)千件,需另投入成本為 (萬元), .每件產(chǎn)品售價為500元.該新產(chǎn)品在市場上供不應(yīng)求可全部賣完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)當(dāng)年產(chǎn)量為多少千件時,該公司在這一新產(chǎn)品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2017年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為: . .
參考數(shù)據(jù):(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的極小值;
(Ⅱ)設(shè)定義在上的函數(shù)在點處的切線方程為:,當(dāng)時,若在內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點”.當(dāng)時,試問函數(shù)是否存在“轉(zhuǎn)點”?若存在,求出轉(zhuǎn)點的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某問答游戲的規(guī)則是:共5道選擇題,基礎(chǔ)分為50分,每答錯一道題扣10分,答對不扣分.試分別用列表法、圖象法、解析法表示一個參與者的得分y與答錯題目道數(shù)x(x∈{0,1,2,3,4,5})之間的函數(shù)關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R),
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上不單調(diào),求實數(shù)a的取值范圍;
(2)記M(a,b)是|f(x)|在區(qū)間[﹣1,1]上的最大值,證明:當(dāng)|a|≥2時,M(a,b)≥2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com