精英家教網 > 高中數學 > 題目詳情

【題目】活水圍網養(yǎng)魚技術具有養(yǎng)殖密度高、經濟效益好的特點.研究表明:活水圍網養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數.當不超過/立方米時, 的值為千克/年;當時, 的一次函數,且當時,

)當時,求關于的函數的表達式.

)當養(yǎng)殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.

【答案】12當養(yǎng)殖密度為/立方米時,魚的年生長量可以達到最大,最大值約為千克/立方米.

【解析】試題分析:(1)根據題意分段求解析式,利用待定系數法求一次函數解析式,最后按分段函數形式書寫2按一次函數與二次函數性質分別求最大值,最后取兩者最大值

試題解析:)當時, ;當時,

,顯然該函數的區(qū)間上是減函數,

由已知得,解得,

故函數

)依題意并由()可得

,

時, 為增函數,故;

時, ,

所以,當時, 的最大值為

當養(yǎng)殖密度為/立方米時,魚的年生長量可以達到最大,

最大值約為千克/立方米.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數)的最小正周期為π,當x= 時,函數f(x)取得最小值,則下列結論正確的是(
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓,上頂點為,焦點為,是橢圓上異于點的不同的兩點,且滿足直線與直線斜率之積為.

1為橢圓上不同于長軸端點的任意一點面積的最大值;

2)試判斷直線是否過定點;若是求出定點坐標;若否,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)當時,求的定義域;

(2)若函數的定義域為非空集合,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數圖象如圖,的導函數,則下列數值排序正確的是( )

A.

B.

C.

D.

【答案】C

【解析】結合函數的圖像可知過點的切線的傾斜角最大,過點的切線的傾斜角最小,又因為點的切線的斜率,點的切線斜率,直線的斜率,故,應選答案C。

點睛:本題旨在考查導數的幾何意義與函數的單調性等基礎知識的綜合運用。求解時充分借助題設中所提供的函數圖形的直觀,數形結合進行解答。先將經過兩切點的直線繞點逆時針旋轉到與函數的圖像相切,再將經過兩切點的直線繞點順時針旋轉到與函數的圖像相切,這個過程很容易發(fā)現,從而將問題化為直觀圖形的問題來求解。

型】單選題
束】
9

【題目】已知、為雙曲線的左、右焦點,點上,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐 中, , 的中點, 是棱 上的點, , , .

(1)求證:平面 底面
(2)設 ,若二面角 的平面角的大小為 ,試確定 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數的定義域;

(2)判斷函數的奇偶性。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為.

(1)求橢圓的方程;

(2)設 是橢圓上關于軸對稱的任意兩個不同的點,連接交橢圓于另一點,證明直線軸相交于定點;

(3)在(2)的條件下,過點的直線與橢圓交于, 兩點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了普及環(huán)保知識增強環(huán)保意識,某校從理工類專業(yè)甲班抽取60人,從文史類乙班抽取50人參加環(huán)保知識測試 附:k2= ,n=a+b+c+d

P(K2>k0

0.100

0.050

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879


(1)根據題目條件完成下面2×2列聯表,并據此判斷你是否有99%的把握認為環(huán)保知識與專業(yè)有關

優(yōu)秀

非優(yōu)秀

總計

甲班

乙班

30

總計

60


(2)為參加上級舉辦的環(huán)保知識競賽,學校舉辦預選賽,預選賽答卷滿分100分,優(yōu)秀的同學得60分以上通過預選,非優(yōu)秀的同學得80分以上通過預選,若每位同學得60分以上的概率為 ,得80分以上的概率為 ,現已知甲班有3人參加預選賽,其中1人為優(yōu)秀學生,若隨機變量X表示甲班通過預選的人數,求X的分布列及期望E(X).

查看答案和解析>>

同步練習冊答案