【題目】已知橢圓的上、下、左、右四個頂點分別為x軸正半軸上的某點滿足.
(1)求橢圓的方程;
(2)設該橢圓的左、右焦點分別為,點在圓上,且在第一象限,過作圓的切線交橢圓于,求證:△的周長是定值.
科目:高中數(shù)學 來源: 題型:
【題目】我國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一直角邊為股,斜邊為弦.若a,b,c為直角三角形的三邊,其中c為斜邊,則a2+b2=c2,稱這個定理為勾股定理.現(xiàn)將這一定理推廣到立體幾何中:在四面體O-ABC中,∠AOB=∠BOC=∠COA=90°,S為頂點O所對面的面積,S1,S2,S3分別為側面△OAB,△OAC,△OBC的面積,則下列選項中對于S,S1,S2,S3滿足的關系描述正確的為( )
A. S2=S+S+S B.
C. S=S1+S2+S3 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學舉行了一次“環(huán)保知識競賽”,全校學生參加了這次競賽,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計,請根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 8 | 0.16 |
第2組 | [60,70) | a | ■ |
第3組 | [70,80) | 20 | 0.40 |
第4組 | [80,90) | ■ | 0.08 |
第5組 | [90,100] | 2 | b |
合計 | ■ | ■ |
(1)求出a,b的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到廣場參加環(huán)保知識的志愿宣傳活動.
①求所抽取的2名同學中至少有1名同學來自第5組的概率;
②求所抽取的2名同學來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點是圓內(nèi)的一個定點,點是圓上的任意一點,線段的垂直平分線和半徑相交于點,當點在圓上運動時,點的軌跡為曲線.
(1)求曲線的方程;
(2)點, ,直線與軸交于點,直線與軸交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;(Ⅱ)若c=,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)圖象上一點處的切線方程為.
(1)求的值;
(2)若方程在內(nèi)有兩個不等實根,求的取值范圍(其中
為自然對數(shù)的底).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設滿足以下兩個條件的有窮數(shù)列, , , 為階“期待數(shù)列”:
①;
②.
()分別寫出一個單調遞增的階和階“期待數(shù)列”.
()若某階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式.
()記階“期待數(shù)列”的前項和為,試證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運輸公司接受了向一地區(qū)每天至少運送180 t物資的任務,該公司有8輛載重為6 t的A型卡車和4輛載重為10 t的B型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為A型卡車4次,B型卡車3次,每輛卡車每天往返的費用為A型卡車320元,B型卡車504元,則公司如何調配車輛,才能使公司所花的費用最低,最低費用為________元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=ex(ln x-a)(e是自然對數(shù)的底數(shù),
e=2.71 828…).
(1)若y=f(x)在x=1處的切線方程為y=2ex+b,求a,b的值.
(2)若函數(shù)f(x)在區(qū)間上單調遞減,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com