【題目】已知函數(shù)是偶函數(shù),且滿足,當(dāng)時, ,當(dāng)時, 的最大值為.
(1)求實數(shù)的值;
(2)函數(shù),若對任意的,總存在,使不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)2;(2)或
【解析】試題分析:
(1)由題意先求得函數(shù)具有性質(zhì),于是可得當(dāng)時, ,利用導(dǎo)數(shù)可判斷在上單調(diào)遞增,故,根據(jù)條件得到.(2)由于“對任意的,總存在,使不等式恒成立”等價于“”,故可將問題轉(zhuǎn)化為求函數(shù)的最大值或其值域.
試題解析:
(1)∵,即,
∴,
∴,
當(dāng)時, ,
∴當(dāng)時, ,
∴.
又,
∴恒成立,
∴在上單調(diào)遞增,
∴,
令,解得.
∴實數(shù)的值為2.
(2)當(dāng)時, ,
∴,
∴函數(shù)在單調(diào)遞增,
∴當(dāng)時, .
又當(dāng)時, ,
∴.
①當(dāng)時, ,函數(shù)在區(qū)間單調(diào)遞增,
∴.
∵對任意的,總存在,使不等式恒成立,
∴
解得;
②當(dāng)時, ,函數(shù)在區(qū)間單調(diào)遞減,
∴,
同①可得,
解得;
綜上或.
∴實數(shù)的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為( )
(附:若隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)
A. 4.56%B. 13.59%C. 27.18%D. 31.74%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1=1,a2=2,an+2= ,n=1,2,3,….求a3,a4,并求數(shù)列{an}的通項公式;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}是等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求通項公式an;
(2)若數(shù)列{an}為遞增數(shù)列,令bn=an+1+an+2+an+3+an+4,求數(shù)列{}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐A﹣BCD中,BCD是邊長為的等邊三角形,,二面角A﹣BC﹣D的大小為θ,且,則三棱錐A﹣BCD體積的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面為直角梯形,,,,為正三角形.
(1)點為棱上一點,若平面,,求實數(shù)的值;
(2)求點B到平面SAD的距離.
【答案】(1);(2)
【解析】試題分析:(1)由平面,可證,進而證得四邊形為平行四邊形,根據(jù),可得;
(2)利用等體積法可求點到平面的距離.
試題解析:((1)因為平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因為,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點.
因為,
.
(2)因為 , ,
所以平面,
又因為平面,
所以平面平面,
平面平面,
在平面內(nèi)過點作直線于點,則平面,
在和中,
因為,所以,
又由題知,
所以,
由已知求得,所以,
連接BD,則,
又求得的面積為,
所以由點B 到平面的距離為.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:
日均派送單數(shù) | 52 | 54 | 56 | 58 | 60 |
頻數(shù)(天) | 20 | 30 | 20 | 20 | 10 |
回答下列問題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,a、b是方程x2-2x+2=0的兩根,且2cos(A+B)=-1.
(1)求角C的度數(shù);
(2)求c;
(3)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的圓心在直線:上,與直線:相切,截直線:所得的弦長為6.
(1)求圓M的方程;
(2)過點的兩條成角的直線分別交圓M于A,C和B,D,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,選項正確的是( )
A. 在回歸直線中,變量時,變量的值一定是15
B. 兩個變量相關(guān)性越強,則相關(guān)系數(shù)就越接近于1
C. 在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān)
D. 若某商品的銷售量(件)與銷售價格(元/件)存在線性回歸方程為,當(dāng)銷售價格為10元時,銷售量為100件左右
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com