分析 分別求出關于p,q的x的范圍,根據(jù)¬p是¬q的充分不必要條件,得到不等式組,解出即可.
解答 解:對于命題p:點(2x+3-x2,x-2)在第四象限,
∴$\left\{\begin{array}{l}{2x+3{-x}^{2}>0}\\{x-2<0}\end{array}\right.$,解得:-1<x<2;
對于命題q:x2-(3a+6)x+2a2+6a<0,其中a>-6,
∴△=(3a+6)2-4(2a2+6a)=(a+6)2>0,
解不等式得:a<x<2a+6,
若¬p是¬q的充分不必要條件,
即q是p的充分不必要條件,
∴q⇒p,
∴$\left\{\begin{array}{l}{a>-1}\\{2a+6<2}\\{a>-6}\end{array}\right.$,不等式無解,
故答案為:∅.
點評 本題考查了充分必要條件,考查命題之間的關系,解不等式問題,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(a2)>f(a+1) | B. | f(a)<f(3a) | C. | f(a2+a)>f(a2) | D. | f(a2-1)<f(a2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,1) | B. | (-∞,-1)∪[1,+∞) | C. | [0,1] | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com