【題目】已知橢圓的離心率,且圓經(jīng)過橢圓C的上、下頂點(diǎn).
(1)求橢圓C的方程;
(2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點(diǎn),證明:的面積為定值(O為坐標(biāo)原點(diǎn)).
【答案】(1);(2)見解析.
【解析】
(1)根據(jù)圓經(jīng)過橢圓C的上、下頂點(diǎn),可得,再根據(jù)離心率即可求得橢圓方程.
(2)分斜率存在與否兩種情況討論,分別計(jì)算出的面積,即可得證.
(1)解:因?yàn)閳A過橢圓C的上、下頂點(diǎn),所以.
又離心率,所以,則.
故橢圓C的方程為.
(2)證明:橢圓,
當(dāng)直線l的斜率不存在時,這時直線l的方程為,
聯(lián)立,得,即,
則.
當(dāng)直線l的斜率存在時,設(shè),
聯(lián)立,得,
由,可得.
聯(lián)立,得.
設(shè),所以,
則.
因?yàn)樵c(diǎn)到直線l的距離,
所以.
綜上所述,的面積為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,補(bǔ)全這個頻率分布直方圖,并據(jù)此估計(jì)本次考試的平均分;
(2)用分層抽樣的方法,在分?jǐn)?shù)段為的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分?jǐn)?shù)段內(nèi)的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是的導(dǎo)數(shù).
(Ⅰ)討論不等式的解集;
(Ⅱ)當(dāng)且時,若在恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地電影院為了了解當(dāng)?shù)赜懊詫煲嫌车囊徊侩娪暗钠眱r的看法,進(jìn)行了一次調(diào)研,得到了票價x(單位:元)與渴望觀影人數(shù)y(單位:萬人)的結(jié)果如下表:
x(單位:元) | 30 | 40 | 50 | 60 |
y(單位:萬人) | 4.5 | 4 | 3 | 2.5 |
(1)若y與x具有較強(qiáng)的相關(guān)關(guān)系,試分析y與x之間是正相關(guān)還是負(fù)相關(guān);
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)根據(jù)(2)中求出的線性回歸方程,預(yù)測票價定為多少元時,能獲得最大票房收入.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有學(xué)生50人,其中男同學(xué)30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務(wù)活動.
(1)求從該班男女同學(xué)在各抽取的人數(shù);
(2)從抽取的5名同學(xué)中任選2名談此活動的感受,求選出的2名同學(xué)中恰有1名男同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.某機(jī)構(gòu)組織了一場詩詞知識競賽,將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,從中隨機(jī)抽取100名選手進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的選手等級與人數(shù)的條形圖.
(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為選手成績優(yōu)秀與文化程度有關(guān)?
優(yōu)秀 | 合格 | 總計(jì) | |
大學(xué)組 | |||
中學(xué)組 | |||
總計(jì) |
(2)若參賽選手共6萬名,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級的選手人數(shù);
(3)在優(yōu)秀等級的選手中選取6名,在良好等級的選手中選取6名,都依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為a,在選出的6名良好等級的選手中任取一名,記其編號為b,求使得方程組有唯一一組實(shí)數(shù)解(x,y)的概率.
參考公式:,其中.
參考數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定兩個命題,P:對任意實(shí)數(shù)x都有ax2+ax+1>0恒成立;Q:關(guān)于x的方程x2﹣x+a=0有實(shí)數(shù)根;如果“P∧Q”為假,且“P∨Q”為真,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究學(xué)生的數(shù)學(xué)核素養(yǎng)與抽象(能力指標(biāo))、推理(能力指標(biāo))、建模(能力指標(biāo))的相關(guān)性,并將它們各自量化為1、2、3三個等級,再用綜合指標(biāo)的值評定學(xué)生的數(shù)學(xué)核心素養(yǎng),若,則數(shù)學(xué)核心素養(yǎng)為一級;若,則數(shù)學(xué)核心素養(yǎng)為二級;若,則數(shù)學(xué)核心素養(yǎng)為三級,為了了解某校學(xué)生的數(shù)學(xué)核素養(yǎng),調(diào)查人員隨機(jī)訪問了某校10名學(xué)生,得到如下:
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同的概率;
(2)從數(shù)學(xué)核心素養(yǎng)等級是一級的學(xué)生中任取一人,其綜合指標(biāo)為,從數(shù)學(xué)核心素養(yǎng)等級不是一級的學(xué)生中任取一人,其綜合指標(biāo)為,記隨機(jī)變量,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(2sinx,-1),,函數(shù)f(x)=.
(1)求函數(shù)f(x)的對稱中心;
(2)設(shè)△ABC的內(nèi)角A,B,C所對的邊為a,b,c,且a2=bc,求f(A)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com