cos(-
23π
6
)=( 。
A、
3
2
B、
1
2
C、-
3
2
D、-
1
2
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:原式中的角度變形后,利用誘導公式化簡,計算即可得到結果.
解答: 解:cos(-
23π
6
)=cos
23π
6
=cos(4π-
π
6
)=cos(-
π
6
)=cos
π
6
=
3
2

故選:A.
點評:此題考查了運用誘導公式化簡求值,熟練掌握誘導公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(4x+φ),x∈[0,2π]的一個零點為
π
8
,則f(x)的所有極值點的和為(  )
A、7π
B、
29π
4
C、
35π
4
D、9π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正三棱柱的平面展開圖,各側面都是正方形,在這個正三棱柱中:
①AB1∥BC1
②AC1與BC是異面直線;
③AB1與BC所成的角的余弦值為
2
4
;
④BC1與A1C垂直.
其中正確的是(  )
A、①③B、②③C、②④D、②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-x的零點個數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(4)=f(-2)=1,且y=f′(x)的圖象如圖所示,則不等式f(x)<1的解集是(  )
A、(-2,0)
B、(0,4)
C、(-2,4)
D、(-∞,-2)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=lg
1+sinx
cosx
的圖象( 。
A、關于x軸對稱
B、關于y軸對稱
C、關于原點對稱
D、關于直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的導函數(shù)圖象如圖所示,若△ABC是以角C為鈍角的鈍角三角形,則一定成立的是( 。
A、f(sinA)>f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(cosA)<f(cosB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=n-5an-85,n∈N*
(1)證明:{an-1}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m).
(1)若點A,B,C不能構成三角形,求實數(shù)m滿足的條件;
(2)若△ABC為直角三角形,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案