【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),長軸在x軸上,長軸長是短軸長的2倍,兩焦點(diǎn)分別為和,橢圓上一點(diǎn)到和的距離之和為12.圓的圓心為.
(1)求的面積;
(2)若橢圓上所有點(diǎn)都在一個圓內(nèi),則稱圓包圍這個橢圓.問:是否存在實(shí)數(shù)k使得圓包圍橢圓?請說明理由.
【答案】(1);(2)不存在,理由見詳解
【解析】
(1)根據(jù)題意分析可得,的值,進(jìn)而得到,再求出的坐標(biāo),即可得到答案;
(2)分與兩種情況討論,發(fā)現(xiàn)橢圓上總有點(diǎn)在圓外,進(jìn)而可得結(jié)論.
(1)設(shè)橢圓方程為:,
橢圓上一點(diǎn)到和的距離之和為12,則有,即,
又長軸長是短軸長的2倍,即,則,
所以橢圓方程為:,
所以,,
又,圓心,
所以△的面積;
(2)當(dāng)時,將橢圓頂點(diǎn)代入圓方程得:,
故橢圓頂點(diǎn)在圓外;
當(dāng)時,將橢圓頂點(diǎn)代入圓方程得:,
故橢圓頂點(diǎn)在圓外;
所以,不論取何值,圓都不可能包圍橢圓.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)為奇函數(shù),且時有極小值.
(1)求實(shí)數(shù)的值;
(2)求實(shí)數(shù)的取值范圍;
(3)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知四邊形是邊長為的正方形,點(diǎn)在底面上的射影為底面的中心點(diǎn),點(diǎn)在棱上,且的面積為1.
(1)若點(diǎn)是的中點(diǎn),求證:平面平面;
(2)在棱上是否存在一點(diǎn)使得二面角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”, 全校學(xué)生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計.請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
| 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 8 | 0 16 |
第2組 | [60,70) | a | ▓ |
第3組 | [70,80) | 20 | 0 40 |
第4組 | [80,90) | ▓ | 0 08 |
第5組 | [90,100] | 2 | b |
合計 | ▓ | ▓ |
(1)求出的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場參加環(huán)保知識的志愿宣傳活動
(ⅰ)求所抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率;
(ⅱ)求所抽取的2名同學(xué)來自同一組的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,,是拋物線上關(guān)于軸對稱的兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線與軸的交點(diǎn),是面積為4的直角三角形.
(1)求拋物線的方程;
(2)若為拋物線上異于原點(diǎn)的任意一點(diǎn),過作的垂線交準(zhǔn)線于點(diǎn),則直線與拋物線是何種位置關(guān)系?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀以下案例,利用此案例的想法化簡.
案例:考察恒等式左右兩邊的系數(shù).
因?yàn)橛疫?/span>,
所以,右邊的系數(shù)為,
而左邊的系數(shù)為,
所以=.
(2)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com