【題目】 如圖所示的幾何體中, ,平面,且平面,正方形的邊長(zhǎng)為2為棱中點(diǎn),平面分別與棱交于點(diǎn).

(Ⅰ)求證:

)求證:平面平面;

)求的長(zhǎng).

【答案】(Ⅰ)見(jiàn)解析;

(Ⅱ)見(jiàn)解析;

(Ⅲ)2.

【解析】

1)利用線面平行判定定理證得平面,再利用線面平行性質(zhì)定理證得;

2)證明直線平面,即證明垂直平面內(nèi)的兩條相交直線;

(3)建立空間直角坐標(biāo)系,設(shè),由,求得。

1)證明:因?yàn)?/span>為正方形,所以,

平面,平面

所以平面.

因?yàn)槠矫?/span>平面,平面

所以.

2)證明:因?yàn)?/span>平面,所以.

因?yàn)?/span>是正方形,所以,又,

所以平面,所以.

因?yàn)?/span>為棱中點(diǎn),且,

所以,又

所以平面,又平面

所以平面平面.-

3)如圖所示,以分別軸建立空間直角坐標(biāo)系,

因?yàn)?/span>,所以,,則

因?yàn)?/span>,

設(shè),且,則,

由(2)可知平面平面,所以

所以,即,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中常數(shù)

(1)當(dāng)時(shí),討論的單調(diào)性

(2)當(dāng)時(shí),是否存在整數(shù)使得關(guān)于的不等式在區(qū)間內(nèi)有解?若存在,求出整數(shù)的最小值;若不存在,請(qǐng)說(shuō)明理由.

參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①對(duì)于獨(dú)立性檢驗(yàn),的值越大,說(shuō)明兩事件相關(guān)程度越大,②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問(wèn)卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過(guò)回歸直線= +及回歸系數(shù),可以精確反映變量的取值和變化趨勢(shì),其中正確的個(gè)數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象中相鄰兩條對(duì)稱軸之間的距離為,且直線是其圖象的一條對(duì)稱軸.

1)求的值;

2)在圖中畫出函數(shù)在區(qū)間上的圖象;

3)將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位,得到的圖象,求單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,圓O,,D為圓O上任意一點(diǎn),過(guò)D作圓O的切線分別交直線E,F兩點(diǎn),連AF,BE交于點(diǎn)G,若點(diǎn)G形成的軌跡為曲線C

AF,BE斜率分別為,,求的值并求曲線C的方程;

設(shè)直線l與曲線C有兩個(gè)不同的交點(diǎn)P,Q,與直線交于點(diǎn)S,與直線交于點(diǎn)T,求的面積與面積的比值的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn)

(1)求曲線的直角坐標(biāo)方程;

(2)若點(diǎn)在曲線上的兩個(gè)點(diǎn)且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】打贏扶貧攻堅(jiān)戰(zhàn),到2020年全面建成小康社會(huì),是中國(guó)共產(chǎn)黨向全世界和全國(guó)人民的承諾.一貧困戶在政府扶持下結(jié)合地方特色聯(lián)合當(dāng)?shù)貛讘糌毨魟?chuàng)辦一家農(nóng)產(chǎn)品公司.為了振興鄉(xiāng)村,打好扶貧攻堅(jiān)戰(zhàn),某市黨政府開展了地標(biāo)特產(chǎn)展銷會(huì).該公司擬定在2020年元旦展銷期間舉行產(chǎn)品促銷活動(dòng),經(jīng)測(cè)算該產(chǎn)品的年銷量t萬(wàn)件(生產(chǎn)量與銷量相等)與促銷費(fèi)用x萬(wàn)元滿足已知2020年生產(chǎn)該產(chǎn)品還需投入成本4+t萬(wàn)元(不含促銷費(fèi)),促銷費(fèi)x滿足當(dāng)產(chǎn)品銷量?jī)r(jià)格定為5/件,當(dāng)產(chǎn)品銷量?jī)r(jià)格定為/(其中a為正常數(shù)).

(1)試將2020年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷費(fèi)費(fèi)x萬(wàn)元的函數(shù);

(2)2020年該公司促銷費(fèi)投入多少萬(wàn)元時(shí),公司利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果是拋物線上的點(diǎn),它們的橫坐標(biāo)依次為,是拋物線的焦點(diǎn),若,則_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E,F,G分別為線段BC,PB,AD的中點(diǎn).

1)證明:EF∥平面PAC

2)證明:平面PCG∥平面AEF;

3)在線段BD上找一點(diǎn)H,使得FH∥平面PCG,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案