8.下列冪函數(shù)中:①$y={x^{\frac{1}{2}}}$;②y=x-2;③$y={x^{\frac{4}{3}}}$;④$y={x^{\frac{1}{3}}}$;其中既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)是③.(填相應(yīng)函數(shù)的序號).

分析 根據(jù)冪函數(shù)的性質(zhì)進(jìn)行判斷即可.

解答 解::①$y={x^{\frac{1}{2}}}$的定義域為[0,+∞),為非奇非偶函數(shù),不滿足條件.;
②y=x-2=$\frac{1}{{x}^{2}}$定義域為(-∞,0)∪(0,+∞),f(-x)=$\frac{1}{{x}^{2}}$=f(x),則函數(shù)是偶函數(shù),在(0,+∞)上單調(diào)單調(diào)遞減,不滿足條件.
③$y={x^{\frac{4}{3}}}$=$\root{3}{{x}^{4}}$,函數(shù)的定義域為(-∞,+∞),則f(-x)=f(x),則函數(shù)為偶函數(shù),則(0,+∞)上單調(diào)遞增,滿足條件.;
④$y={x^{\frac{1}{3}}}$的定義域為(-∞,+∞),函數(shù)為奇函數(shù),不滿足條件;
故答案為:③

點評 本題主要考查冪函數(shù)的性質(zhì),根據(jù)函數(shù)奇偶性和單調(diào)性的定義進(jìn)行判斷是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=2px的準(zhǔn)線方程是x=-2,則p的值是( 。
A.$-\frac{1}{8}$B.$\frac{1}{8}$C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.為了了解高一年級學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組的頻數(shù)為12.則 樣本容量為150.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}的前n項和為Sn,且滿足Sn=2an-1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列$\left\{{\frac{2n-1}{a_n}}\right\}$的前n項和Tn;
(Ⅲ)數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=3.若不等式${log_2}({b_n}-2)<\frac{3}{16}{n^2}+t$對任意n∈N*恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計算
(1)$(\frac{2}{3}{)^0}+{2^{-2}}×(2\frac{1}{4}{)^{-\;\frac{1}{2}}}-(0.01{)^{0.5}}$
(2)log25625+lg$\frac{1}{100}$+lne.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$f(x)=\frac{2}{{{3^x}+1}}+m$,m是實常數(shù),
(1)當(dāng)m=1時,寫出函數(shù)f(x)的值域;
(2)當(dāng)m=0時,判斷函數(shù)f(x)的奇偶性,并給出證明;
(3)若f(x)是奇函數(shù),不等式f(f(x))+f(a)<0有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ為常數(shù),且A>0,ω>0,-$\frac{π}{2}<ϕ<\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α)=$\frac{6}{5}$,0<α<$\frac{π}{2}$,求$f(2α+\frac{π}{12})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖:AB是拋物線y2=2px(p>0)過焦點F的一條弦,設(shè)A(x1,y1),B(x2,y2),AB的中點M(x0,y0),相應(yīng)的準(zhǔn)線為l.
證明:
(1)以AB為直徑的圓必與準(zhǔn)線l相切;
(2)|AB|=2(x0+$\frac{p}{2}$)(焦點弦長與中點關(guān)系);
(3)|AB|=x1+x2+p;
(4)x1•x2=$\frac{{p}^{2}}{4}$,y1•y2=-p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,以原點O為圓心,以橢圓C的長半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程
(2)過橢圓C的右焦點F作斜率為-$\frac{\sqrt{2}}{2}$的直線l交橢圓C于A,B兩點,且$\overrightarrow{OA}+\overrightarrow{OD}=\overrightarrow{BO}$,又點D關(guān)于坐標(biāo)原點O的對稱點為點E,求AB與DE兩條線段的垂直平分線的交點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案