11.與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1共焦點(diǎn),且過點(diǎn)(4,0)的橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{11}$=1.

分析 設(shè)與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1共焦點(diǎn)的橢圓標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{9+k}+\frac{{y}^{2}}{4+k}$=1,把點(diǎn)(4,0)代入上述方程可得:$\frac{16}{9+k}$+0=1,解得k即可得出.

解答 解:設(shè)與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1共焦點(diǎn)的橢圓標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{9+k}+\frac{{y}^{2}}{4+k}$=1,
把點(diǎn)(4,0)代入上述方程可得:$\frac{16}{9+k}$+0=1,解得k=7.
∴滿足條件的橢圓標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{11}$=1.
故答案為:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{11}$=1.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,曲線${C_1}:{(x-2)^2}+{(y-2)^2}=8$,曲線${C_2}:{x^2}+{y^2}={r^2}(0<r<4)$,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線θ=α$(0<α<\frac{π}{2})$與曲線C1交于O,P兩點(diǎn),與曲線C2交于O,N兩點(diǎn),且|PN|最大值為$2\sqrt{2}$
(1)將曲線C1與曲線C2化成極坐標(biāo)方程,并求r的值;
(2)射線$θ=α+\frac{π}{4}$與曲線C1交于O,Q兩點(diǎn),與曲線C2交于O,M兩點(diǎn),求四邊形MNPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在45°的二面角的一個(gè)半平面內(nèi)有一點(diǎn)P,它到另一個(gè)半平面的距離等于1,則點(diǎn)P到二面角的棱的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的一動點(diǎn)P到左、右焦點(diǎn)F1,F(xiàn)2的距離之和為2$\sqrt{2}$,點(diǎn)P到橢圓一個(gè)焦點(diǎn)的最遠(yuǎn)距離為$\sqrt{2}$+1
(Ⅰ)求橢圓的方程;
(Ⅱ)過右焦點(diǎn)F2的直線交橢圓于A,B兩點(diǎn)
①若y軸上是否存在一點(diǎn)M(0,$\frac{1}{3}$)滿足|MA|=|MB|,求直線l斜率k的值;
②是否存在這樣的直線l,使S△ABO的最大值為$\frac{\sqrt{2}}{2}$(其中O為坐標(biāo)原點(diǎn))?若存在,求直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ex(x2+ax+1).
(Ⅰ)當(dāng)a∈R時(shí),討論f (x)的單調(diào)性;
(Ⅱ)若實(shí)數(shù)a滿足a≤-1,且函數(shù)g(x)=4x3+3(b+4)x2+6(b+2)x(b∈R)的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,求證:g(x)的極小值小于等于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓的焦點(diǎn)分別為F1(-2$\sqrt{2}$,0)、F2(2$\sqrt{2}$,0),長軸長為6,設(shè)直線x-y+2=0交橢圓于A、B兩點(diǎn)
(1)求橢圓的方程;
(2)求線段AB的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=-$\frac{1}{3}$x3+x2+ax在x=3取得極值,則f(x)的極大值為( 。
A.6B.5C.9D.-$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若對數(shù)函數(shù)y=logax的圖象過點(diǎn)(9,2),則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,是某人在用火柴拼圖時(shí)呈現(xiàn)的圖形,其中第1個(gè)圖象用了3根火柴,第2個(gè)圖象用了9根火柴,第3個(gè)圖形用了18根火柴,
…,則第20個(gè)圖形用的火柴根數(shù)為630.

查看答案和解析>>

同步練習(xí)冊答案