已知數(shù)列{an}滿足a1=1,且各項(xiàng)均不等于零,an+1+2anan+1-an=0,(n∈N*
(1)求證數(shù)列{
1
an
}
是等差數(shù)列;
(2)a1a2+a2a3+a3a4+…+anan+1
21
43
,求n的取值范圍.
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件變形,得到
1
an+1
-
1
an
=2
,由此證明數(shù)列{
1
an
}
是等差數(shù)列.
(2)由(1)得到
an=
1
2n-1
(n∈N+)
,從而得到anan+1=
1
2
(
1
2n-1
-
1
2n+1
)
,由此得到a1a2+a2a3+…+anan+1=
n
2n+1
21
43
,由此能求出n的取值范圍.
解答: 解:(1)∵數(shù)列{an}滿足a1=1,且各項(xiàng)均不等于零,
an+1+2anan+1-an=0,(n∈N*
1
an+1
-
1
an
=2
,
∴數(shù)列{
1
an
}
是等差數(shù)列.
(2)由(1)知,數(shù)列{
1
an
}
是首項(xiàng)為1,公差為2的等差數(shù)列,
1
an
=1+(n-1)•2
=2n-1,
∴{an}的通項(xiàng)公式為
an=
1
2n-1
(n∈N+)
,
∴anan+1=
1
2n-1
1
2n+1
=
1
2
(
1
2n-1
-
1
2n+1
)

∴a1a2+a2a3+…+anan+1
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)

=
n
2n+1
,
∵a1a2+a2a3+…+anan+1
21
43

n
2n+1
21
43
,解得n>21,
∵n∈N*,∴n≥22,n∈N*
∴n的取值范圍{n|n≥22,n∈N*}.
點(diǎn)評:本題考查等差數(shù)列的證明,考查數(shù)列前n項(xiàng)和的求法及其應(yīng)用,解題時要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

條件p:x≥0,條件q:x2≤x,則p是q的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“開門大吉”是某電視臺推出的游戲益智節(jié)目.選手面對1-4號4扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.正確回答每一扇門后,選手可自由選擇帶著獎金離開比賽,還可繼續(xù)挑戰(zhàn)后面的門以獲得更多獎金(獎金金額累加),但是一旦回答錯誤,獎金將清零,選手也會離開比賽.在一次場外調(diào)查中,發(fā)現(xiàn)參加比賽的選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否人數(shù)如圖所示. 
每扇門對應(yīng)的夢想基金:(單位:元)
第一扇門 第二扇門 第三扇門 第四扇門
1000 2000 3000 5000
(Ⅰ)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對歌曲名稱與否與年齡有關(guān)?說明你的理由.(下面的臨界值表供參考)
P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001
k 2.706 3.841 5.024 6.635 7.879 10.828
(Ⅱ)若某選手能正確回答第一、二、三、四扇門的概率分別為
4
5
,
3
4
2
3
,
1
3
,正確回答一個問題后,選擇繼續(xù)回答下一個問題的概率是
1
2
,且各個問題回答正確與否互不影響.設(shè)該選手所獲夢想基金總數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.(參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4cosxsin(x+
π
6
)-1,x∈R.
(1)求f(0)的值;
(2)若將y=f(x)的圖象向右平移ϕ(ϕ>0)個單位,所得到的曲線恰好經(jīng)過坐標(biāo)原點(diǎn),求ϕ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公差不為零的等差數(shù)列{an}中,a4=7,且a2、a5、a14成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求a1+a4+a7+…+a3n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平面α∩β=l,點(diǎn)A∈α,點(diǎn)B∈α,點(diǎn)C屬于β,且A∉l,B∉l,直線AB與l不平行,那么平面ABC與平面β的交線與l有什么關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,
Sn
n
)(n∈N*)
均在函數(shù)y=
1
2
x+
1
2
的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為2,P是AA1的中點(diǎn),E是BB1上的點(diǎn),則PE+EC的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x=2m-1,m∈N+},B={x|x=2m+1,m∈N+},則集合A與B之間的關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊答案