【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的右頂點(diǎn),求面積的最大值.
【答案】解:(Ⅰ)因?yàn)闄E圓上一點(diǎn)和它的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為,
所以, ……………1分
又橢圓的離心率為,即,所以, ………………2分
所以,. ………………4分
所以,橢圓的方程為. ………………5分
(Ⅱ)方法一:不妨設(shè)的方程,則的方程為.
由得, ………………6分
設(shè),,因?yàn)?/span>,所以, …………7分
同理可得, ………………8分
所以,, ………………10分
, ………………12分
設(shè),則, ………………13分
當(dāng)且僅當(dāng)時(shí)取等號(hào),所以面積的最大值為. ………………14分
方法二:不妨設(shè)直線的方程.
由消去得, ………………6分
設(shè),,
則有,. ① ………………7分
因?yàn)橐?/span>為直徑的圓過點(diǎn),所以.
由,
得. ………………8分
將代入上式,
得.
將 ① 代入上式,解得或(舍). ………………10分
所以(此時(shí)直線經(jīng)過定點(diǎn),與橢圓有兩個(gè)交點(diǎn)),
所以
. ……………12分
設(shè),
則.
所以當(dāng)時(shí),取得最大值. ……………14分
【解析】
(1)由題意可知2a+2c和e的值,所以可以求出a,b,c進(jìn)而確定橢圓方程.
(2)以AB為直徑的圓過右頂點(diǎn)C,實(shí)質(zhì)是,然后用坐標(biāo)表示出來,再通過直線l的方程與橢圓方程聯(lián)立,借助韋達(dá)定理和判斷式把△ABC面積表示成關(guān)于k的函數(shù),然后利用函數(shù)的方法求最值.
(Ⅰ)因?yàn)闄E圓上一點(diǎn)和它的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為,∴, 又橢圓的離心率為,即,所以,
∴,. ………… 3分∴,橢圓的方程為.……4分
(Ⅱ)由直線的方程.聯(lián)立消去得,………… 5分
設(shè),,則有,. ① ……… 6分
因?yàn)橐?/span>為直徑的圓過點(diǎn),所以.由,得.…………… 7分
將代入上式,得.
將 ① 代入上式,解得或(舍). ……… 8分
所以,記直線與軸交點(diǎn)為,則點(diǎn)坐標(biāo)為,
所以
設(shè),則.
所以當(dāng)時(shí),取得最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C: ,過點(diǎn)的直線l的參數(shù)方程為: (t為參數(shù)),直線l與曲線C分別交于M、N兩點(diǎn).
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM |,|MN|,|PN|成等比數(shù)列,求a的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《漢字聽寫大會(huì)》不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”弘揚(yáng)傳統(tǒng)文化,某市大約10萬(wàn)名市民進(jìn)行了漢字聽寫測(cè)試.現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測(cè)試情況,發(fā)現(xiàn)被測(cè)試市民正確書寫漢字的個(gè)數(shù)全部在到之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第1組或第4組的概率;
(2)已知第5,6兩組市民中有3名女性,組織方要從第5,6兩組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有40位同學(xué),座位號(hào)記為,用下面的隨機(jī)數(shù)表選取5組數(shù)作為參加青年志愿者活動(dòng)的5位同學(xué)的座位號(hào).
4954 4454 8217 3793 2378 8735 2096 4384 2634 9164
5724 5506 8877 0474 4767 2176 3350 2583 9212 0767 5086
選取方法是從隨機(jī)數(shù)表第一行的第11列和第12列數(shù)字開始,由左到右依次選取兩個(gè)數(shù)字,則選出來的第5個(gè)志愿者的座位號(hào)是( )
A.09B.20C.37D.38
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的方程為().
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若直線l與x正半軸、射線()分別交于P,Q兩點(diǎn),當(dāng)a為何值時(shí),的面積最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校初一年級(jí)全年級(jí)共有名學(xué)生,為了拓展學(xué)生的知識(shí)面,在放寒假時(shí)要求學(xué)生在假期期間進(jìn)行廣泛的閱讀,開學(xué)后老師對(duì)全年級(jí)學(xué)生的閱讀量進(jìn)行了問卷調(diào)查,得到了如圖所示的頻率分布直方圖(部分已被損毀),統(tǒng)計(jì)人員記得根據(jù)頻率直方圖計(jì)算出學(xué)生的平均閱讀量為萬(wàn)字.根據(jù)閱讀量分組按分層抽樣的方法從全年級(jí)人中抽出人來作進(jìn)一步調(diào)查.
(1)在閱讀量為萬(wàn)到萬(wàn)字的同學(xué)中有人的成績(jī)優(yōu)秀,在閱量為萬(wàn)到萬(wàn)字的同學(xué)中有人成績(jī)不優(yōu)秀,請(qǐng)完成下面的列聯(lián)表,并判斷在“犯錯(cuò)誤概率不超過”的前提下,能否認(rèn)為“學(xué)生成績(jī)優(yōu)秀與閱讀量有相關(guān)關(guān)系”;
閱讀量為萬(wàn)到萬(wàn)人數(shù) | 閱讀量為萬(wàn)到萬(wàn)人數(shù) | 合計(jì) | |
成績(jī)優(yōu)秀的人數(shù) | |||
成績(jī)不優(yōu)秀的人數(shù) | |||
合計(jì) |
(2)在抽出的同學(xué)中,1)求抽到被污染部分的同學(xué)人數(shù);2)從閱讀量在萬(wàn)到萬(wàn)字及萬(wàn)到萬(wàn)字的同學(xué)中選出人寫出閱讀的心得體會(huì).求這人中恰有人來自閱讀量是萬(wàn)到萬(wàn)的概率.
參考公式: ,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研院所共有科研人員800人,其中具有高級(jí)職稱的160人,具有中級(jí)職稱的320人,具有初級(jí)職稱的240人,無職稱的80人,欲了解該科研院所科研人員的創(chuàng)新能力,決定抽取100名科研人員進(jìn)行調(diào)查,應(yīng)怎樣進(jìn)行抽樣?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 甲、乙二人比賽,甲勝的概率為,則比賽5場(chǎng),甲勝3場(chǎng)
B. 某醫(yī)院治療一種疾病的治愈率為10%,前9個(gè)病人沒有治愈,則第10個(gè)病人一定治愈
C. 隨機(jī)試驗(yàn)的頻率與概率相等
D. 天氣預(yù)報(bào)中,預(yù)報(bào)明天降水概率為90%,是指降水的可能性是90%
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com