【題目】已知橢圓 的焦距為,斜率為的直線與橢圓交于兩點,若線段的中點為,且直線的斜率為.
(1)求橢圓的方程;
(2)若過左焦點斜率為的直線與橢圓交于點 為橢圓上一點,且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.
【答案】(1) .
(2) 為定值.過程見解析.
【解析】分析:(1)焦距說明,用點差法可得=.這樣可解得,得橢圓方程;
(2)若,這種特殊情形可直接求得,在時,直線方程為,設(shè),把直線方程代入橢圓方程,后可得,然后由紡長公式計算出弦長,同時直線方程為,代入橢圓方程可得點坐標,從而計算出,最后計算即可.
詳解:(1)由題意可知,設(shè),代入橢圓可得:
,兩式相減并整理可得,
,即.
又因為,,代入上式可得,.
又,所以,
故橢圓的方程為.
(2)由題意可知,,當為長軸時,為短半軸,此時
;
否則,可設(shè)直線的方程為,聯(lián)立,消可得,
,
則有:,
所以
設(shè)直線方程為,聯(lián)立,根據(jù)對稱性,
不妨得,
所以.
故,
綜上所述,為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果一個三位數(shù)的各位數(shù)字互不相同,且各數(shù)字之和等于10,則稱此三位數(shù)為“十全十美三位數(shù)”(如235),任取一個“十全十美三位數(shù)”,該數(shù)為奇數(shù)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個命題中,其中正確命題的序號為____________.
① 函數(shù)是周期為的偶函數(shù);
② 若 是第一象限的角,且,則 ;
③是函數(shù)的一條對稱軸方程;
④ 在內(nèi)方程有3個解
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線M上的動點到定點距離是它到定直線距離的一半.
(1)求曲線M的方程;
(2)設(shè)過點且傾斜角為的直線與曲線M相交與A、B兩點,在定直線l上是否存在點C,使得,若存在,求出點C的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為萬元,每生產(chǎn)千件需另投入萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)求直線和圓的普通方程;
(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(3)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為y,觀影人數(shù)記為x,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后y與x的函數(shù)圖象,給出下列四種說法,①圖(2)對應(yīng)的方案是:提高票價,并提高成本;②圖(2)對應(yīng)的方案是:保持票價不變,并降低成本;③圖(3)對應(yīng)的方案是:提高票價,并保持成本不變;④圖(3)對應(yīng)的方案是:提高票價,并降低成本.其中,正確的說法是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com