【題目】如圖,正三棱柱的每條棱的長度都相等,,分別是棱,的中點,是棱上一點,且平面.
(1)證明:平面.
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析(2).
【解析】
(1)由平面,利用線面平行的性質(zhì)定理可得,又是棱的中點,可得是棱的中點,進而得到四邊形是平行四邊形,,利用線面平行的判定定理即可證得平面;
(2)以為坐標(biāo)原點,建立空間直角坐標(biāo)系.設(shè),求出平面的法向量 和,利用即可得出.
(1)證明:平面,平面,
平面平面,
,又是棱的中點,
是棱的中點.
又是的中點,,,
四邊形是平行四邊形.
,
又平面,平面,
平面.
(2)以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,設(shè),
則,,,,,
,,,
設(shè)平面的法向量為,則,
,,
令,得,
,
直線與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知四邊形是菱形,,,,二面角的大小為,是的中點.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于給定的數(shù)列,,設(shè),即是,,…,中的最大值,則稱數(shù)列是數(shù)列,的“和諧數(shù)列”.
(1)設(shè),,求,,的值,并證明數(shù)列是等差數(shù)列;
(2)設(shè)數(shù)列,都是公比為q的正項等比數(shù)列,若數(shù)列是等差數(shù)列,求公比q的取值范圍;
(3)設(shè)數(shù)列滿足,數(shù)列是數(shù)列,的“和諧數(shù)列”,且(m為常數(shù),,2,…,k),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象過點,且相鄰兩個最高點與最低點的距離為.
(1)求函數(shù)的解析式和單調(diào)增區(qū)間;
(2)若將函數(shù)圖象上所有的點向左平移個單位長度,再將所得圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,得到函數(shù)的圖象,求在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右頂點分別為A,B,離心率為,長軸長為4,動點S在C上位于x軸上方,直線與直線,分別交于M,N兩點.
(1)求橢圓C的方程
(2)求|MN|的最小值
(3)當(dāng)最小時,在橢圓C上是否存在這樣的點T,使△TSB面積為?若存在,請確定點T的個數(shù);若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,且a3+2S6=77,a10﹣a5=10.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足:b1=1,bn﹣bn﹣1=an﹣n+1(n≥2),求數(shù)列{}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖.正四面體ABCD的頂點A,B,C分別在兩兩垂直的三條射線OX,OY,OZ上,則在下列命題中,錯誤的為( 。
A.O﹣ABC是正三棱錐B.二面角D﹣OB﹣A的平面角為
C.直線AD與直線OB所成角為D.直線OD⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點坐標(biāo)為,一條斜率為的直線分別交軸于點,交橢圓于點,且點三等分.
(1)求該橢圓的方程;
(2)若是第一象限內(nèi)橢圓上的點,其橫坐標(biāo)為2,過點的兩條不同的直線分別交橢圓于點,且直線的斜率之積,求證:直線恒過定點,并求出定點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com