若k∈R,則k=5是方程
x2
k-3
-
y2
k+3
=1表示雙曲線的( 。l件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)雙曲線的定義和方程,結合充分條件和必要條件的定義進行判斷即可得到結論.
解答: 解:若k=5,則方程
x2
k-3
-
y2
k+3
=1等價為
x2
2
-
y2
8
=1
,表示雙曲線,
若方程
x2
k-3
-
y2
k+3
=1表示雙曲線,則(k-3)(k+3)>0,即k>3或k<-3,故必要性不成立,
故k=5是方程
x2
k-3
-
y2
k+3
=1表示雙曲線的充分不必要條件,
故選:A.
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)雙曲線的定義是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若tanα=
3
3
,則 
sin2α
cos2α
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司生產一種產品,固定成本為20000元,每生產一單位的產品,成本增加100元,若總收入R與年產量x的關系是R(x)=
-
x3
900
+400x,0≤x≤390
90090,x>390
,則當總利潤最大時,每年生產產品的單位數(shù)是( 。
A、150B、200
C、250D、300

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某演繹推理的“三段”分解如下:①(250-1)不能被2整除;②一切奇數(shù)都不能被2整除;③(250-1)是奇數(shù).按照演繹推理的三段論模式,排序正確的是( 。
A、①→②→③
B、③→②→①
C、②→①→③
D、②→③→①

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式(x-5)(6-x)>6-x的解集是( 。
A、(5,+∞)
B、(6,+∞)
C、∅
D、(-∞,5),(6,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+x-b的零點x0∈(n,n+1)(n∈Z),其中常數(shù)a,b滿足0<b<1<a,則n的值為( 。
A、2B、1C、-2D、-l

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若拋物線y2=ax的焦點與橢圓
x2
6
+
y2
2
=1的左焦點重合,則a的值為( 。
A、-8B、-16C、-4D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中正確的個數(shù)有( 。
(1)平行于同一直線的兩個平面平行;
(2)平行于同一平面的兩個平面平行;
(3)垂直于同一直線的兩直線平行;
(4)垂直于同一平面的兩直線平行;
(5)垂直于同一直線的兩個平面平行.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-
y2
3
=1的左右焦點分別為F1、F2,過F2的直線交該雙曲線右支于兩點A、B.若|AB|=8,則△ABF1的周長為( 。
A、4
B、20
C、4
3
D、8

查看答案和解析>>

同步練習冊答案