如圖,A1,A為橢圓的兩個(gè)頂點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn)。
(1)寫(xiě)出橢圓的方程及準(zhǔn)線方程;
(Ⅱ)過(guò)線段OA上異于O,A的任一點(diǎn)K作OA的垂線,交橢圓于P,P1兩點(diǎn),直線A1P與AP1交于點(diǎn)M,求證:點(diǎn)M在雙曲線上。
解:(1)由圖可知,該橢圓的方程為,所以
該橢圓的方程為
準(zhǔn)線方程為。
(2)設(shè)K點(diǎn)坐標(biāo),點(diǎn)P、P1的坐標(biāo)分別記為,
其中,則……①
直線A1P,P1A的方程分別為:……②
……③
②式除以③式得
化簡(jiǎn)上式得,代入②式得
于是,直線A1P與AP1的交點(diǎn)M的坐標(biāo)為
因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20111202/201112021136106251528.gif">
所以,直線A1P與AP1的交點(diǎn)M在雙曲線上。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A1,A為橢圓的兩個(gè)頂點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn).
(Ⅰ)寫(xiě)出橢圓的方程;
(Ⅱ)過(guò)線段OA上異于O,A的任一點(diǎn)K作OA的垂線,交橢圓于P,P1兩點(diǎn),直線A1P與AP1交于點(diǎn)M.求證:點(diǎn)M在雙曲線
x2
25
-
y2
9
=1
上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2003•北京)如圖,A1,A為橢圓的兩個(gè)頂點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn).
(Ⅰ)寫(xiě)出橢圓的方程及準(zhǔn)線方程;
(Ⅱ)過(guò)線段OA上異于O,A的任一點(diǎn)K作OA的垂線,交橢圓于P,P1兩點(diǎn),直線A1P與AP1交于點(diǎn)M.求證:點(diǎn)M在雙曲線
x2
25
-
y2
9
=1
上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(03年北京卷文)(15分)

如圖,A1,A為橢圓的兩個(gè)頂點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn).

   (Ⅰ)寫(xiě)出橢圓的方程及準(zhǔn)線方程;

   (Ⅱ)過(guò)線段OA上異于O,A的任一點(diǎn)K作OA的垂線,交橢圓于P,P1兩點(diǎn),直線

         A1P與AP1交于點(diǎn)M.

   求證:點(diǎn)M在雙曲線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2003年北京市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,A1,A為橢圓的兩個(gè)頂點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn).
(Ⅰ)寫(xiě)出橢圓的方程及準(zhǔn)線方程;
(Ⅱ)過(guò)線段OA上異于O,A的任一點(diǎn)K作OA的垂線,交橢圓于P,P1兩點(diǎn),直線A1P與AP1交于點(diǎn)M.求證:點(diǎn)M在雙曲線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案