分析 (1)證明BC⊥PA,然后證明BC⊥平面PAC,利用平面與平面垂直的判定定理證明平面PBC⊥平面PAC;
(2)取AB的中點D,過D作DE⊥PB交PB于E,連接CE,說明∠CED就是二面角C-PB-A的平面角,通過在Rt△CDE中,求出二面角C-PB-A的正切值.
解答 (1)證明:∵PA⊥平面ABC,BC證明:
∵PA⊥平面ABC,BC?平面ABC,∴BC⊥PA,
又∵BC⊥AC,且AC∩PA=A,∴BC⊥平面PAC,而BC?平面PBC,
∴平面PBC⊥平面PAC;
(2)解:取AB的中點D,過D作DE⊥PB交PB于E,連接CE,
∵PA⊥平面ABC,
∴平面PAB⊥平面ABC,∴CD⊥平面PAB,而PB?平面PAB,
∴PB⊥CD,∴∠CED就是二面角C-PB-A的平面角,
令A(yù)C=2,則BC=2,在Rt△ABC中,AC=BC,∴AB=2$\sqrt{2}$,∴CD=$\sqrt{2}$,
又∵PB與平面ABC成60°角,PA⊥平面ABC,
∴∠PBA=60°,∴PB=4$\sqrt{2}$,PA=2$\sqrt{6}$,
易知△PAB∽△DEB,∴DE=$\frac{\sqrt{6}}{2}$,
在Rt△CDE中,
tan∠CED=$\frac{CD}{DE}$=$\frac{\sqrt{2}}{\frac{\sqrt{6}}{2}}$=$\frac{2\sqrt{3}}{3}$.
∴二面角C-PB-A的正切值為$\frac{2\sqrt{3}}{3}$.
點評 本題考查平面與平面垂直的判定定理的應(yīng)用,考查二面角的平面角的求法,考查空間想象能力以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}\vec a+\frac{1}{3}\vec b$ | B. | $\frac{1}{3}\vec a+\frac{2}{3}\vec b$ | C. | $\frac{1}{3}\vec a-\frac{2}{3}\vec b$ | D. | $\frac{1}{3}\vec a-\frac{1}{3}\vec b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相交 | B. | 平行 | C. | 在平面α內(nèi) | D. | 平行或在平面α內(nèi) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com