【題目】如圖所示,四面體ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4 ,∠ABC=30°.
(1)求證:AC⊥BD;
(2)若二面角B﹣AC﹣D為45°,求直線AB與平面ACD所成的角的正弦值.
【答案】
(1)證明:△ABC中,由余弦定理得AC2=36+48﹣2× =12,
∴ ,∴AC2+BC2=AB2,∴AC⊥BC.
又平面BCD⊥平面ABC,平面BCD∩平面ABC=BC,AC平面ABC,
∵AC⊥平面BCD.又∵BD平面BCD,
∴AC⊥BD.
(2)解:∵AC⊥平面BCD,CD平面BCD,
∴AC⊥CD.又∵BC⊥AC,
∴∠BCD是平面DAC與平面BAC所成的二面角的平面角,即∠BCD=45°.
∵BD⊥CD,AC⊥BD,CD平面ACD,AC平面ACD,CD∩AC=C,
∴BD⊥平面ACD.
∴∠BAD是AB與平面ACD所成的角.
Rt△ACD中, ,
∴ .
即求直線AB與平面ACE所成的角的正弦值為 .
【解析】(1)利用余弦定理計(jì)算AC,得出AC⊥BC,再利用面面垂直的性質(zhì)得出AC⊥平面BCD,從而有AC⊥BD;(2)證明BD⊥平面ACD,于是∠BAD為所求角,先計(jì)算BD,在Rt△ABD中計(jì)算sin∠BAD.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用空間中直線與直線之間的位置關(guān)系和空間角的異面直線所成的角的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn);已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)= 有最大值,則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.[﹣2,+∞)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名籃球運(yùn)動(dòng)員在7場(chǎng)比賽中的得分情況如莖葉所示, 甲、 乙分別表示甲、乙兩人的平均得分,則下列判斷正確的是( )
A. 甲> 乙 , 甲比乙得分穩(wěn)定
B. 甲> 乙 , 乙比甲得分穩(wěn)定
C. 甲< 乙 , 甲比乙得分穩(wěn)定
D. 甲< 乙 , 乙比甲得分穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體ABCDE中,AB=AC,平面BCDE⊥平面ABC,BE∥CD,CD⊥BC,BE=1,BC=2,CD=3,M為BC的中點(diǎn).
(1)若N是棱AE上的動(dòng)點(diǎn),求證:DE⊥MN;
(2)若平面ADE與平面ABC所成銳二面角為60°,求棱AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有10支隊(duì)伍參加籃球比賽,規(guī)定:比賽采取單循環(huán)比賽制,即每支隊(duì)伍與其他9支隊(duì)伍各比賽一場(chǎng);每場(chǎng)比賽中,勝方得2分,負(fù)方得0分,平局雙方各得1分.下面關(guān)于這10支隊(duì)伍得分的敘述正確的是( )
A.可能有兩支隊(duì)伍得分都是18分
B.各支隊(duì)伍得分總和為180分
C.各支隊(duì)伍中最高得分不少于10分
D.得偶數(shù)分的隊(duì)伍必有偶數(shù)個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“拋物線 的準(zhǔn)線方程為 ”是“拋物線 的焦點(diǎn)與雙曲線 的焦點(diǎn)重合”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在海岸線 一側(cè)有一休閑游樂(lè)場(chǎng),游樂(lè)場(chǎng)的前一部分邊界為曲線段 ,該曲線段是函數(shù) , 的圖像,圖像的最高點(diǎn)為 .邊界的中間部分為長(zhǎng)1千米的直線段 ,且 .游樂(lè)場(chǎng)的后一部分邊界是以 為圓心的一段圓弧 .
(1)求曲線段 的函數(shù)表達(dá)式;
(2)曲線段 上的入口 距海岸線 最近距離為1千米,現(xiàn)準(zhǔn)備從入口 修一條筆直的景觀路到 ,求景觀路 長(zhǎng);
(3)如圖,在扇形 區(qū)域內(nèi)建一個(gè)平行四邊形休閑區(qū) ,平行四邊形的一邊在海岸線 上,一邊在半徑 上,另外一個(gè)頂點(diǎn)P在圓弧 上,且 ,求平行四邊形休閑區(qū) 面積的最大值及此時(shí) 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015男籃亞錦賽決賽階段,中國(guó)男籃以9連勝的不敗戰(zhàn)績(jī)贏得第28屆亞錦賽冠軍,同時(shí)拿到亞洲唯一1張直通里約奧運(yùn)會(huì)的入場(chǎng)券.賽后,中國(guó)男籃主力易建聯(lián)榮膺本屆亞錦賽MVP(最有價(jià)值球員),如表是易建聯(lián)在這9場(chǎng)比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).
比分 | 易建聯(lián)技術(shù)統(tǒng)計(jì) | |||
投籃命中 | 罰球命中 | 全場(chǎng)得分 | 真實(shí)得分率 | |
中國(guó)91﹣42新加坡 | 3/7 | 6/7 | 12 | 59.52% |
中國(guó)76﹣73韓國(guó) | 7/13 | 6/8 | 20 | 60.53% |
中國(guó)84﹣67約旦 | 12/20 | 2/5 | 26 | 58.56% |
中國(guó)75﹣62哈薩克期坦 | 5/7 | 5/5 | 15 | 81.52% |
中國(guó)90﹣72黎巴嫩 | 7/11 | 5/5 | 19 | 71.97% |
中國(guó)85﹣69卡塔爾 | 4/10 | 4/4 | 13 | 55.27% |
中國(guó)104﹣58印度 | 8/12 | 5/5 | 21 | 73.94% |
中國(guó)70﹣57伊朗 | 5/10 | 2/4 | 13 | 55.27% |
中國(guó)78﹣67菲律賓 | 4/14 | 3/6 | 11 | 33.05% |
注:①表中a/b表示出手b次命中a次;
②TS%(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:
TS%= .
(Ⅰ)從上述9場(chǎng)比賽中隨機(jī)選擇一場(chǎng),求易建聯(lián)在該場(chǎng)比賽中TS%超過(guò)50%的概率;
(Ⅱ)從上述9場(chǎng)比賽中隨機(jī)選擇兩場(chǎng),求易建聯(lián)在這兩場(chǎng)比賽中TS%至少有一場(chǎng)超過(guò)60%的概率;
(Ⅲ)用x來(lái)表示易建聯(lián)某場(chǎng)的得分,用y來(lái)表示中國(guó)隊(duì)該場(chǎng)的總分,畫(huà)出散點(diǎn)圖如圖所示,請(qǐng)根據(jù)散點(diǎn)圖判斷y與x之間是否具有線性相關(guān)關(guān)系?結(jié)合實(shí)際簡(jiǎn)單說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的周期為4的奇函數(shù),當(dāng)0<x<2時(shí),f(x)=4x , 則f(﹣ )+f(2)= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com